Margin Requirements, Demand Pressure, and Equity Option Returns*

Steffen Hitzemann† Michael Hofmann‡
Marliese Uhrig-Homburg§ Christian Wagner¶

October 2016

Abstract

Margin requirements are an important factor in asset and derivatives markets. In option markets, traders face margin requirements both for the options themselves and for hedging-related positions in the underlying stock market. We show that these requirements are compensated by a significant margin premium in the cross-section of equity option returns. The direction of this effect depends on demand pressure: If end-users are on the long side of the market, option returns fall with margins, while they increase otherwise. Our results are statistically and economically significant and robust to different margin specifications and various control variables. We explain our findings by a model in which derivatives dealers are funding-constrained and require a premium for satisfying the end-users’ option demand.

Keywords: equity options, margins, funding liquidity, cross-section of option returns
JEL Classification: G12, G13

*This work was supported by the Deutsche Forschungsgemeinschaft [UH 107/4-1, KO 2285/3-1].
†Department of Finance, Fisher College of Business, The Ohio State University, Columbus, OH 43210, hitzemann.6@osu.edu.
‡Institute for Finance, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany, michael.hofmann@kit.edu.
§Institute for Finance, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany, uhrig@kit.edu.
¶Department of Finance, Copenhagen Business School, DK-2000 Frederiksberg, Denmark, cwa.fi@cbs.dk.
1 Introduction

Recent research suggests that margin requirements are an important factor in asset and derivatives markets (e.g., Santa-Clara and Saretto, 2009; Gârleanu and Pedersen, 2011; Rytchkov, 2014). While some popular phenomena, such as a negative CDS-bond basis, highlight the empirical relevance of funding effects, the evidence on the role of margin requirements for other derivatives markets is relatively limited. Especially, an important yet open question is whether margin requirements play a role for the cross-section of equity option returns. In this paper, we show that the cross-section of equity option returns contains an economically and statistically significant premium which compensates for margin requirements in the options market and in the underlying stock market.

Our analysis is guided by a model for derivatives markets, in which option dealers face an exogenous demand of end-users and hedge their position in the underlying stock. Margin requirements for both the option and for the stock position tie up the dealer’s capital and are compensated by the market if funding is costly. This gives rise to a margin premium

\[\pi = -\text{sgn}(d) \psi \frac{M_F + |\Delta| M_S}{F} \]

which is priced in the cross-section of equity options. For a particular option, the size of the margin premium depends on the option’s margin requirement \(M_F \) and the capital requirement \(|\Delta| M_S \) for the hedging-related stock position, both relative to the option’s price \(F \). Importantly, the margin premium’s sign hinges on the end-user demand \(d \) being positive or negative – higher margin requirements lead to larger option returns if the dealer takes the long side of the market \((d < 0) \), but decrease returns if the dealer is short \((d > 0) \).
Furthermore, margin premia are larger in a situation where funding is scarce, as reflected by a large funding spread ψ.

We investigate the model predictions for a large sample of equity options, based on margin rules that are applied in practice.\(^1\) In particular, the margin for shorting an option depends on the price of the underlying and the option’s moneyness, while entering a long position involves depositing a fixed fraction of the option price. For the underlying stock market, we model margin requirements as a fixed fraction of the stock price for all stocks, such that the cross-sectional variation of the hedging capital requirement comes from the size of the hedging-related stock position. As our model suggests, a sensible identification strategy for margin premia has to condition on the end-user demand.\(^2\) Indeed, we find empirically that a naive cross-sectional sort of the whole option sample by margin requirements does not reveal a significant margin effect. Once we condition on the demand pressure for an option, however, the sorts unveil significant margin premia as predicted by our model. In particular, a strategy that is long in call (put) options with low margin requirements and short in options with high margin requirements yields an annual delta-hedged excess return of 76% (41%) if we restrict our sample on options with high *buying* pressure. On the other hand, the opposite strategy – high margin options long and low margin options short – makes 22% (24%) per year for options with high *selling* pressure.

These results are completely in line with the predictions of our model, indicating that margin premia play an important role for the cross-section of option returns. To strengthen our

\(^1\) For options, we rely on the margin requirements specified by the CBOE margin manual. Minimum margin requirements on stock positions are defined in Federal Reserve Board’s Regulation T.

\(^2\) It would not necessarily be required to condition on end-user demand if end-users were consistently short (or long) in all options and at all points in time. An analysis of actual order imbalance data suggests, however, that end-users are short in approximately 59.7% and long in 40.3% of the options. These numbers are implied by the average order imbalance (aggregated on firm level) of -0.051 and standard deviation of 0.208 reported by Goyenko (2015), if we assume that demand is normally distributed.
argument further, we rule out several alternative explanations for these results. First, note that our findings hold both for call and for put options and are therefore not driven by one of the many effects that are specific to puts. Second, we argue that the identified margin premia are different from the “embedded leverage” effect proposed by Frazzini and Pedersen (2012), although the hedging capital requirement in our model is proportional to the embedded leverage of an option. Frazzini and Pedersen (2012) suggest that options with higher embedded leverage have smaller returns as a consequence of a higher end-user demand for these options. As we condition on demand pressure in our analysis, a possible explanation for our findings cannot be based on demand effects. In addition, we find that for options that are subject to end-user selling pressure, option returns increase with the hedging capital requirement, contrasting with the negative premia on embedded leverage found by Frazzini and Pedersen (2012).

Third, we confirm our results by running Fama-MacBeth regressions, controlling for a number of additional effects that could potentially bias our results. In particular, we control for moneyness and maturity effects, option greeks as determinants of hedging costs (Gârleanu et al., 2009), liquidity effects (Christoffersen et al., 2015), systematic risk (Duan and Wei, 2009), as well as the underlying stock’s volatility (Cao and Han, 2013) and the firm size and leverage. To condition on the demand pressure of an option, we run these regressions in a “segmented” way by estimating a different slope coefficient for different demand quantiles. The regressions unanimously confirm the sorting results, yielding a significant negative margin coefficient for high-demand options and a significant positive one in the low-demand quantiles. In addition, the regressions allow us to separate the effect of the options-related margin M_F/F and the overall stock-related margin $|\Delta| M_S/F$ by estimating two separate slope coefficients. Finally, we use the results of this paper to define a market-based funding liquidity measure.
that is calculated from option returns. The measure is based on the idea that margin premia should be greater when funding liquidity is scarce, which is also predicted by our model. More precisely, we construct our measure from the time series of margin long-short portfolio returns, which capture the margin premium as shown before. We find that the resulting funding liquidity measure is significantly correlated with the TED spread and behaves very similarly especially during the financial crisis, which ultimately confirms that margin requirements affect option returns through the funding channel.

Our paper contributes to a fast-growing literature that emphasizes the role of financial intermediaries for security prices (He and Krishnamurthy, 2012, 2013). The idea of this literature is that financial intermediaries – who are often the marginal investors in asset or derivatives markets – need to be compensated for bearing risk or providing liquidity if their capacities for doing so are limited. In this spirit, several papers show that margins and capital requirements are an important factor for asset prices (Asness et al., 2012; Adrian et al., 2014; Frazzini and Pedersen, 2014; Rytchkov, 2014) and derivatives (Santa-Clara and Saretto, 2009; Gârleanu and Pedersen, 2011) if agents are funding-constrained. A particularity of derivatives markets is that the intermediaries, e.g., option dealers, hedge their positions in the underlying market, such that their compensation is also driven by the costs of the hedging strategy and the amount of unhedgeable risks (see Gârleanu et al., 2009; Engle and Neri, 2010; Kanne et al., 2015; Leippold and Su, 2015; Muravyev, 2016). In the equity options market, both the margin requirements for the options themselves and the capital tied up for the hedging strategy are relevant and priced in the cross-section of option returns, as we show in this paper.

Furthermore, several papers reveal that the effects described are more pronounced when funding liquidity is scarce (Chen and Lu, 2016; Golez et al., 2016) and vary with the end-user
demand (Bollen and Whaley, 2004; Gârleanu et al., 2009; Frazzini and Pedersen, 2012; Boyer and Vorkink, 2014; Constantinides and Lian, 2015). We show that both aspects are also important for the margin premium in the equity options market: In our case, the sign of the margin premium depends on whether the end-user demand is positive or negative, making option dealers take the long or the short side of the market. The magnitude of this (positive or negative) premium depends on the available funding liquidity, and we find larger margin premia when funding is scarce.

Finally, our study naturally contributes to the literature on the cross-section of option returns in general. In this literature, it is shown that the cross-section of option returns can partly be explained by volatility risk (Coval and Shumway, 2001; Bakshi and Kapadia, 2003; Schürhoff and Ziegler, 2011), jump risk (Broadie et al., 2009), correlation risk (Driessen et al., 2009), and systematic risk in general (Duan and Wei, 2009), as well as by option expensiveness (Goyal and Saretto, 2009) and idiosyncratic stock volatility (Cao and Han, 2013). Recent works reveal that the options’ market liquidity (Christoffersen et al., 2015) and related liquidity risk (Choy and Wei, 2016) is priced in the cross-section as well, suggesting that liquidity considerations play an important role for option dealers. Our analysis confirms this intuition from the funding liquidity perspective, showing that margin requirements are an important driver of the cross-section of option returns.

The rest of this paper is structured follows. In Section 2, we develop a model for derivatives markets that allows us to make several predictions on the effect of margin requirements on equity option returns. Section 3 describes our options sample as well as the margin rules and the measure for end-user option demand. Section 4 analyzes the returns of option portfolios that are constructed by sorting our option sample with respect to margin requirements. In Section 5, we extend our analysis of margin premia by running Fama-MacBeth regressions and
controlling for several variables that drive the cross-section of option returns. We construct an option-market implied measure for funding liquidity based on margin premia in Section 6. Section 7 confirms the robustness of our results, and Section 8 concludes the paper.

2 Option Trading under Funding Constraints

We develop a model for derivatives markets that accounts for two main market features: margin requirements for derivatives and the underlying stock market, and limited funding capacities of derivatives traders. In the model, option dealers face an exogenous option demand of end-users and are compensated by a premium for the costs incurred to satisfy this demand, similar to Gârleanu et al. (2009). In our case, these costs arise from margin requirements in the option market and the underlying stock market – margins tie up capital, which is costly when funding is limited (see Gârleanu and Pedersen, 2011). Combining these features, the model allows us to characterize the effect of margin requirements on option returns theoretically, and guides our empirical analysis.

Instruments and Payoffs We consider a simple discrete-time economy with a risk-free asset paying an exogenous rate \(R_f = 1 + r_f \), and a risky asset with exogenous price \(S_t \), which we call \textit{stock}. In addition, there is a derivative security with endogenous price \(F_t \), called \textit{option}. Let \(\bar{\mu}_S = \mathbb{E}_t(S_{t+1} - R_fS_t) \) and \(\bar{\mu}_F = \mathbb{E}_t(F_{t+1} - R_fF_t) \) denote the expected excess gains of an investment in the stock and the option, respectively. Furthermore, we denote the conditional variances and covariances of prices as \(\sigma_S^2 = \text{var}_t(S_{t+1}) \), \(\sigma_F^2 = \text{var}_t(F_{t+1}) \), and \(\sigma_{SF} = \text{cov}_t(S_{t+1}, F_{t+1}) \).
Agents Following Frazzini and Pedersen (2014), we consider an overlapping-generations model with agents living for two periods. In time \(t \), the economy is populated by two young agents: a derivatives end-user who has an exogenous, inelastic option demand \(d \), and a derivatives dealer with zero wealth, \(W_t = 0 \), who satisfies the end-user demand and hedges herself through the stock market. The dealer maximizes expected utility of next period’s wealth by choosing optimal positions \(x = x_t \) and \(q = q_t \) in the stock and the option market:

\[
\max_{x,q} E_t(W_{t+1}) - \frac{\gamma}{2} \text{var}_t(W_{t+1}),
\]

where \(\gamma > 0 \) characterizes the dealer’s risk aversion.

As a benchmark case, let us consider the standard portfolio choice problem of an unconstrained dealer, assuming an end-user option demand of zero. In that case, the dealer takes no position in the option market by assumption and her terminal wealth is given by \(W_{t+1} = x(S_{t+1} - R_f S_t) \). This yields the well-known solution \(x^* = \frac{\bar{\mu}}{\gamma \sigma^2} S =: \eta \).

Margin Requirements We now introduce margin requirements into our setting. Specifically, for a position \(q > 0 \) in the option market, a net margin of \(M_F^+ \geq 0 \) has to be held in the margin account, while the short margin for \(q < 0 \) is \(M_F^- \geq 0 \). For the stock market, we assume that the dealer holds an ex-ante optimal stock position of \(\eta \) without incurring funding costs,\(^3\) and has to post a margin \(M_S \geq 0 \) for her excess stock holding \(\theta = x - \eta \).\(^4\)

\(^3\) In practice, for an institutional option trader, this position may be held by the stock trading desk. Consequently, its funding costs are not relevant for the optimization problem of the dealer.

\(^4\) If one buys a stock, one may use a margin loan of up to \(S_t - M_S \). The remainder has to be financed with own capital. On the other hand, a short position demands the deposit of \(S_t + M_S \), which may be covered in part by the short sale proceeds \(S_t \). In either case, the net capital requirement is \(M_S \).
Altogether, for a portfolio of $\eta + \theta$ stocks and q options, a net margin of

$$M(\theta, q) = |\theta| M_S + |q| \left(1_{\{q>0\}} M_F^+ + 1_{\{q<0\}} M_F^- \right)$$

has to be held in the margin account, earning the risk-free rate. Most importantly, Eq. (2) implies that the margin requirement of a security is independent of the remaining portfolio composition (as also assumed by Gârleanu and Pedersen, 2011, for example).

Funding Finally, we assume that the dealer finances the margins by obtaining funding at an individual rate $\tilde{r} \geq r^f$, and we define $\psi = \tilde{r} - r^f$ as the dealer’s funding spread.\(^5\) If $\tilde{r} > r^f$, we say that the dealer is funding-constrained.

Under these assumptions, the wealth of a dealer who holds a portfolio of $\eta + \theta$ stocks and q options evolves according to the following dynamics:

$$W_{t+1} = (\eta + \theta)(S_{t+1} - R^f S_t) + q(F_{t+1} - R^f F_t) - \psi \left(|\theta| M_S + |q| \left(1_{\{q>0\}} M_F^+ + 1_{\{q<0\}} M_F^- \right) \right).$$

By assumption, the dealer satisfies any option demand d in equilibrium. The dealer hedges the associated risk with an additional stock position θ, provided that the end-user’s option demand, dealer’s risk aversion, and the covariance between stock and option prices are sufficiently large, so that the utility gain from risk reduction is larger than the marginal funding costs of the stock:

\(^5\) Alternatively, as outlined in Gârleanu and Pedersen (2011), ψ could also be interpreted as shadow costs of funding arising from binding capital constraints.
Proposition 1 (Hedging). If there is a non-zero option demand d with $|d \gamma \sigma_{SF}| > \psi M_S$, the dealer hedges herself through an additional position of

$$
\theta = d \Delta - \text{sgn}(d \Delta) \frac{\psi}{\gamma \sigma_S^2} M_S
$$

(4)

stocks, where $\Delta = \frac{\sigma_{SF}}{\sigma_S}$.

Note that Δ is a discrete-time version of the option’s delta, such that the dealer implements a standard delta-hedge, adjusted for the margin that is required for the stock position.

In equilibrium, the current option price F_t establishes in such way that it is, in fact, optimal for the dealer to satisfy the demand and take an option position of $-d$. This allows us to characterize equilibrium option returns.

Proposition 2 (Option Returns). If there is a non-zero option demand d with $|d \gamma \sigma_{SF}| > \psi M_S$, the expected option return is

$$
E_t \left(\frac{F_{t+1} - F_t}{F_t} \right) = r^f + \frac{\Delta \mu_S}{F_t} - d \gamma \frac{\sigma_F^2 - \Delta \sigma_{SF}}{F_t} - \text{sgn}(d) \psi \frac{M_F + |\Delta| M_S}{F_t},
$$

(5)

where $M_F = M_F^{-\text{sgn}(d)}$ is the option margin faced by the dealer, and $\text{sgn}(d)$ is the sign of demand. Equivalently, delta-hedged excess option returns are given by

$$
E_t \left(\frac{G_{t,t+1}}{F_t} \right) = -d \gamma \frac{\sigma_F^2 - \Delta \sigma_{SF}}{F_t} - \text{sgn}(d) \psi \frac{M_F + |\Delta| M_S}{F_t},
$$

(6)

where $G_{t,t+1} = F_{t+1} - R^f F_t - \Delta(S_{t+1} - R^f S_t)$ denotes the gains of a delta-hedged portfolio.

The first term of Eq. (6), $-d \gamma (\sigma_F^2 - \Delta \sigma_{SF})F_t^{-1}$, is an analogous result to Gârleanu et al. (2009): Option returns decrease proportionally with demand, risk aversion of dealers, and the
unhedgeable part of the option dynamics. In addition, delta-hedged option returns exhibit a twofold margin premium. In line with Gârleanu and Pedersen (2011), there is a compensation for costly margin requirements of the options, which is given by product of the relative margin requirement, the funding spread, and an indicator for the position held. Furthermore, funding costs of the hedging-related stock position in the underlying are compensated, as well. More precisely, option returns contain a premium for the marginal funding costs of the hedging position. Therefore, option returns compensate for $|\Delta|M_S$, although the option dealer optimally chooses not to hold a full delta-hedging position.

Proposition 2 also has a useful implication for option prices.

Proposition 3 (Option Prices). Under the assumptions of Proposition 2, the resulting option price is given by

$$F_t = F^0_t + d \gamma \sigma_F^2 - \Delta \sigma_{SF} + \text{sgn}(d) \frac{\psi}{R_f} (M_F + |\Delta|M_S),$$

where $F^0_t = \mathbb{E}_t \left(\frac{F_{t+1} - \bar{\mu}_S}{R_f} \right)$ is the option price in the unconstrained equilibrium without option demand ($d = 0, \psi = 0$). Consequently, the sign of demand is related to the option’s price through

$$\text{sgn}(d) = \text{sgn}(F_t - F^0_t).$$

Intuitively, if there is option demand on the long side of the market, options are relatively expensive. This result serves as a motivation for our empirical analysis, where we use the difference of implied and historical volatilities as a measure of price pressure and, consequently, as an approximation for the sign of demand.
Overall, we define the second term of Eq. (6) as the *margin premium*

\[\pi = -\text{sgn}(d) \psi \frac{M_F + |\Delta| M_S}{F_t}, \quad (9) \]

which depends on the margin requirement faced by the dealer, who might have a long or short option position, depending on the option demand.

In the following, we assume that margin loans on long option positions are not possible, so that \(M_F^+ = F \). Under this additional assumption, the margin premium takes the following form:

Corollary 1 (Margin Premium). If \(M_F^+ = F \), the margin premium equals

\[\pi = \begin{cases}
-\psi \left(\frac{M_F}{F_t} + \frac{|\Delta| M_S}{F_t} \right), & F_t > F_t^0, \\
+\psi \left(1 + \frac{|\Delta| M_S}{F_t} \right), & F_t < F_t^0.
\end{cases} \quad (10) \]

As before, the sign of the margin premium depends on the option demand, which can be inferred from price pressure. In absolute terms, the hedging position induces a premium \(\psi |\Delta| M_S / F \), which is independent from option demand. On the contrary, even in absolute terms, the premium on option margin requirements still depends on the position of the dealer.

If the dealer is short, the margin premium reflects the requirement on a short option position relative to the option’s price, \(M_F^- / F \). Otherwise, if the dealer has a long position, the relevant margin requirement is \(M_F^+ / F = 1 \). Therefore, there is no cross-sectional variation in the premium on option margins if the dealer is long.

6 Under the strategy-based margin rules of the CBOE, margin loans are only allowed for options with a time to maturity of more than nine months. For such options, the margin requirement is 75% of the options’ price. So even if margin loans are allowed, there is no pronounced cross-sectional variation between different options in margin requirements relative to the options’ prices.
In summary, margin requirements for short option positions, M_F/F, and the hedging-related stock position, $|\Delta| M_S/F$, both relative to the option’s price, are of central importance for our analysis. In the following, we refer to these quantities simply as option margin m and hedging capital \tilde{m}.

Altogether, we get several testable hypotheses:

Corollary 2. Under the given assumptions, our model predicts that

a) Option returns decrease in option margins and hedging capital requirements for options in which end-users are long.

b) Option returns increase in hedging capital requirements, but exhibit no cross-sectional variation with respect to option margins for options in which end-users are short.

c) The effects of option margins and hedging capital requirements are stronger when agents are more funding-constrained, i.e., for large ψ.

2.1 Simulation study

To get an idea about the relative importance of the premia on unhedgeable risks and margin requirements, we estimate model-implied call option prices and expected option returns using stochastic simulation.\footnote{Results for put options are qualitatively similar and are available upon request.} First, we simulate 100,000 stock price paths on a fine grid from $t = 0$ to $T = 0.5$ years, the latter being the maturity date of the options. We model the underlying
stock price \(S_t \) as a diffusion process with stochastic volatility:

\[
dS_t = S_t (r_f + \alpha) \, dt + S_t \sqrt{V_t} \, dW_t^S
\]

(11)

\[
dV_t = \kappa (\theta - V_t) \, dt + \sigma \sqrt{V_t} \, dW_t^V,
\]

(12)

where \(W_t^S \) and \(W_t^V \) are two correlated Brownian motions with instantaneous correlation \(\rho \).

Following Broadie et al. (2007), we set the mean-reversion speed \(\kappa = 0.023 \), the long-term variance \(\theta = 0.90 \), the volatility parameter \(\sigma = 0.14 \), and the correlation \(\rho = -0.4 \) as estimated by Eraker et al. (2003). All of these parameters correspond to daily percentage returns. We set the annual risk-free rate \(r_f \) to 3% and the equity premium \(\alpha \) to 5%.

Dealer’s risk aversion is set to \(\gamma = 4 \) and we assume a fixed, exogenous demand level \(d \) for all options. Under the chosen parameters, the option dealer optimally chooses to hold \(\eta = 0.56 \) stocks for speculation. Based on this reference point, we calculate option prices for exogenous demand levels between \(-50\) and \(+50\) contracts, which represents a rather high demand pressure in comparison to the speculative stock holding. As in our following empirical study, option margins are set in accordance with the CBOE margins manual (see Section 3.2).

For the calculation of option prices, recall the result from Proposition 3:

\[
F_t = E_t \left(\frac{F_{t+1} - \Delta \bar{\mu}_S}{R_f} \right) + d \gamma \frac{\sigma_F^2 - \Delta \sigma_{SF}}{R_f} + \text{sgn}(d) \frac{\psi}{R_f} (M_F + |\Delta| M_S)
\]

(13)

As we consider overlapping generations of agents living for two periods, Eq. (13) may be chained over time to get an iteration rule for option prices. More precisely, we assume that dealers have a daily planning horizon, such that the above iteration rule may be used to
calculate option prices each day. The starting point of this iteration is the option value at maturity, which is equal to its payoff: \(\max (S_T - X, 0) \). To estimate the time-\(t \) conditional moments \(E_t(F_{t+1}), \sigma^2_t, \sigma_{SF}, \) and \(\sigma^2_S \), as well as \(\Delta = \sigma_{SF}/\sigma^2_S \), we use a regression approach in the spirit of Longstaff and Schwartz (2001). More details on the simulation algorithm are given in Appendix B.

Figure 1: Simulated option prices

This figure shows simulated option prices based on our model dependent on the option’s moneyness. In particular, we simulate call option prices (for which the moneyness is given by \(S/K \)) and consider different scenarios of end-user demand \(d \). While the left plot illustrates the resulting option prices for the case that option dealers are not funding-constrained (\(\psi = 0\% \)), the right plot assumes an funding spread of \(\psi = 5\% \).

Fig. 1 shows the resulting option prices for an annual funding spread \(\psi \) of zero and 5\%, respectively. If option dealers are not funding constrained, the prices for small demand levels approximately match the frictionless Black-Scholes prices, given by the dotted line. For higher long or short demand, there are substantial deviations reflecting premia on unhedgeable risk.
A non-zero funding spread drives an additional wedge between options with long and short demand, which more than doubles the price differences.

Figure 2: Simulated delta-hedged returns

This figure shows simulated delta-hedged option returns based on our model dependent on the corresponding margin requirements. We consider the margin requirements of an option dealer both for the option itself (left plot) as well as for a hedging-related position in the underlying stock (right plot), for different scenarios of end-user demand d. Returns are calculated on a monthly basis.

Fig. 2 shows corresponding average delta-hedged returns over 20 trading days for different level of option margins and hedging capital, respectively. There is a strong relation between both types of margin requirements and option returns, and the direction of the effect depends on the respective demand pressure. When end-user demand is positive, option returns are monotonously decreasing in both types of margin requirements, as expected. On the other hand, for negative demand, option returns are not only increasing in hedging capital, but also in option margins. At first glance, this seems contradictory, since margin requirements
Figure 3: Endogenous connection between option margins and hedging capital

This figure illustrates the relation of an option’s moneyness and the corresponding margin requirements based on our model. In particular, we simulate call option prices (for which the moneyness is given by S/K) and consider different scenarios of end-user demand d. The left plot shows the margin for the options position itself, the right plot the capital requirement for a hedging-related position in the underlying stock.

On short position should only have an impact if option dealers are short, hence when end-user demand is positive. As shown in Fig. 3, the reason for this puzzling finding lies in the positive connection between option margins and hedging capital. For short demands, both variables are almost perfectly correlated, which explains their similar impact on option returns. On the other hand, for positive demand levels, the connection between the two measures is not as strong. In particular, for option margins between 10 and 15, there is almost no variation in hedging capital, but a clearly monotone decrease in option returns, which indicates that option margins indeed induce a separate type of margin premium. Finally, Fig. 3 shows that hedging capital is bounded, whereas option margins can be arbitrarily large, a finding that is...
also confirmed by our empirical analysis of margin requirements described in Section 3.2.

Simulated portfolio returns

To shed light on the relation between the different return premia, we analyze margin-sorted portfolio returns of 2500 randomly chosen call options. Specifically, we randomly draw simple moneyness, time to maturity between one and sixth months, and a demand between -50 and 50, and simulate the corresponding option price and monthly delta-hedged returns using 10,000 stock paths. Then, we remove options with extreme margin requirements to reduce the impact of outliers. That is, if the resulting option margin is not between 5 and 15, we repeat the simulation with another set of randomly selected parameters. This margin interval is chosen to match the empirically observed margin requirements (cf. Table 2.C).

Subsequently, we sort the options in demand quintiles, and then into quintiles of option margins and hedging capital, respectively, conditional on demand. Table 1 reports long-short returns of option margins (Table 1.A) and hedging capital (Table 1.B), respectively, conditional on demand for different variants of the simulated model. In the first specification, we consider the standard model with risk-averse and funding-constrained option dealers, which results in monotonously decreasing long-short returns that fit the empirically observed pattern (see Table 3) remarkably well.

In the second specification, we explore the case of option dealers who do not demand a premium for unhedgeable risks, but only their funding costs. In this case, simulated long-

8 In contrast to our empirical analysis, we form groups on the given true end-user demand. As unreported analyses show, forming margin quintiles conditional on implied volatility quintiles results in similar patterns of margin long-short returns.

9 To obtain these results, we formally set $\gamma = 0$ in Eq. (13). But note that dealers are still assumed to optimally hedge their option position, so this special case is not strictly consistent with the assumed modeling framework.
Table 1: Margin long-short returns of simulated call option portfolios

This table shows long-short returns of simulated quintile portfolios formed on option margins conditional on demand. All returns are given in monthly percent.

Panel A: Option margins

<table>
<thead>
<tr>
<th>Demand</th>
<th>Unh. risk</th>
<th>Funding constrained</th>
<th>Funding unconstrained</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>averse</td>
<td>neutral</td>
</tr>
<tr>
<td>1 (low)</td>
<td></td>
<td>2.93</td>
<td>1.44</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2.19</td>
<td>1.52</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>-2.60</td>
<td>1.08</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>-4.46</td>
<td>-4.23</td>
</tr>
<tr>
<td>5 (high)</td>
<td></td>
<td>-5.89</td>
<td>-4.01</td>
</tr>
</tbody>
</table>

Panel B: Hedging capital

<table>
<thead>
<tr>
<th>Demand</th>
<th>Unh. risk</th>
<th>Funding constrained</th>
<th>Funding unconstrained</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>averse</td>
<td>neutral</td>
</tr>
<tr>
<td>1 (low)</td>
<td></td>
<td>8.88</td>
<td>2.59</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>4.84</td>
<td>2.85</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>-0.51</td>
<td>2.18</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>-4.71</td>
<td>-2.66</td>
</tr>
<tr>
<td>5 (high)</td>
<td></td>
<td>-7.65</td>
<td>-2.51</td>
</tr>
</tbody>
</table>

short returns are even closer to the empirical observations, although monotonicity is lost. This is expected, as the margin premium only depends on the sign of demand and not its level.

Finally, the last two columns of Table 1 repeat the first and second specification under the additional assumption of zero funding costs. If there is a premium on unhedgeable risk, we still observe a decreasing return pattern across demand groups, but the overall effect is of smaller magnitude than the empirical effect observed at margin sorts. Therefore, we conclude that unhedgeable risks are not sufficient to explain the cross-sectional return patterns, but
we need to correct for this effect in order to correctly estimate the influence of margin requirements (see Section 5).

3 Data and Methodology

Our analysis builds on options data from February 1996 to August 2013 provided by the OptionMetrics Ivy DB database. We restrict our sample to options on common stocks with standard settlement and expiration dates. Further, we remove option-date observations with missing prices or probable recording errors, that is, options with non-positive bid price or a bid-ask spread lower than the minimum tick size. All prices are corrected for corporate actions using the adjustment factors provided by OptionMetrics. We use the U.S. Treasury Bills rate as the risk-free interest rate, which we obtain from Kenneth French’s data library, along with standard equity risk factors.

For the calculation of delta-hedged option returns below, we define monthly holding periods (simply referred to as month) and apply additional filters to the first trading day of a month, in line with the literature (see Goyal and Saretto (2009); Driessen et al. (2009), among others). Specifically, we drop options with zero open interest and missing implied volatility or delta. We remove options that violate standard no-arbitrage bounds. To minimize the impact of early exercise, we only keep options with a time value of at least 5% of the option value. The results of this paper are robust to modifications of these selection criteria, as we discuss in Section 7.

\[F - \max(S - K, 0) \]

\[F - \max(K - S, 0) \]

where \(F \) is the option’s price, \(K \) is the strike price, and \(S \) is the price of the underlying stock.

\[\text{\footnotesize For stocks that are part of the penny-pilot program, the minimum tick size is $0.05 ($0.01) for options trading above (below) $3. For all other stocks, the minimum tick size is $0.10 ($0.05).} \]

\[\text{\footnotesize http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html} \]

\[\text{\footnotesize We define the time value of a call option as } F - \max(S - K, 0), \text{ and for a put option as } F - \max(K - S, 0), \text{ where } F \text{ is the option’s price, } K \text{ is the strike price, and } S \text{ is the price of the underlying stock.} \]

20
Our full option sample consists of 6,058,466 option-months for calls and 5,573,875 for puts, summing up to 11,632,341 data points in total. Panel A of Table 2 shows more details on the composition of our sample. On average, we consider 230,547 options written on 2,417 stocks per year. These numbers are fairly equally split up into call and put options, with 119,485 calls and 111,062 puts per year. On average, we have about 26 options per stock and month.

3.1 Delta-Hedged Option Returns

Following Frazzini and Pedersen (2012), we use monthly delta-hedged option returns for our analysis. Our monthly holding periods are aligned at the expiration days of standard exchange-listed options, which is the Saturday following the third Friday of a given month. That is, we set up our portfolios at the first trading day after an expiration date (usually a Monday) and unwind positions at the last trading day before the next expiration date (usually a Friday).

At portfolio formation, say in \(t = 0 \), we invest $1 in an option and set up a self-financing hedging position in the underlying stock. The portfolio value at a later date can then be determined with the following iteration rule:

\[
V_{t+1} = V_t + x (F_{t+1} - F_t) - x \Delta_t (S_{t+1} + D_{t+1} - S_t) + r_t^f (V_t - x F_t + x \Delta_t S_t),
\]

(14)

where \(x = \frac{1}{F_0} \) is the number of options in the portfolio and \(D_{t+1} \) is the dividend paid in \(t + 1 \). We rebalance the hedging position in the stock each day, as long as delta is not missing. Otherwise, we hold the previous stock position until a new value for delta is available.

Finally, at the end of the month, say in \(t = T \), the portfolio has the value \(V_T \). As \(V_0 = 1 \), the
Table 2: Descriptive statistics

This table shows several descriptive statistics on the full option sample. Panel A informs about the sample composition. For the first line, we count all available stocks within a year and calculate the mean, median, and standard deviation over all full years in our sample, i.e., from 1997 to 2012. In addition, quantiles at the 5% and 95% level are given in the last two columns. Lines (2) to (4) show the respective results for all options, as well as separately for call and put options. Lines (5) to (7) show the number of options per stock and months, using data from February 1996 up to August 2013. Panel B and C show summary statistics on delta-hedged option returns and our main explanatory variables, respectively.

Panel A: Sample composition

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Median</th>
<th>Std</th>
<th>5%</th>
<th>95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Stocks per year</td>
<td>2 417</td>
<td>2 387</td>
<td>453</td>
<td>1 593</td>
<td>3 063</td>
</tr>
<tr>
<td>(2) Options per year</td>
<td>230 547</td>
<td>205 165</td>
<td>81 926</td>
<td>108 346</td>
<td>370 090</td>
</tr>
<tr>
<td>(3) Call options per year</td>
<td>119 485</td>
<td>110 473</td>
<td>37 773</td>
<td>61 442</td>
<td>180 095</td>
</tr>
<tr>
<td>(4) Put options per year</td>
<td>111 062</td>
<td>96 726</td>
<td>44 814</td>
<td>46 904</td>
<td>189 995</td>
</tr>
<tr>
<td>(5) Options per stock-month</td>
<td>26</td>
<td>16</td>
<td>31</td>
<td>3</td>
<td>84</td>
</tr>
<tr>
<td>(6) Call options per stock-month</td>
<td>14</td>
<td>9</td>
<td>16</td>
<td>2</td>
<td>43</td>
</tr>
<tr>
<td>(7) Put options per stock-month</td>
<td>13</td>
<td>8</td>
<td>16</td>
<td>1</td>
<td>43</td>
</tr>
</tbody>
</table>

Panel B: Delta-hedged option returns (monthly percent)

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Median</th>
<th>Std</th>
<th>Skewness</th>
<th>Kurtosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>(11) Call option returns</td>
<td>−1.657</td>
<td>−0.788</td>
<td>26.698</td>
<td>−0.009</td>
<td>5.625</td>
</tr>
<tr>
<td>(12) Put option returns</td>
<td>0.503</td>
<td>−0.549</td>
<td>25.299</td>
<td>0.309</td>
<td>4.503</td>
</tr>
</tbody>
</table>

Panel C: Explanatory variables

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Median</th>
<th>Std</th>
<th>5%</th>
<th>95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>(8) Expensiveness</td>
<td>0.011</td>
<td>0.013</td>
<td>0.278</td>
<td>−0.436</td>
<td>0.450</td>
</tr>
<tr>
<td>(9) Hedging capital</td>
<td>3.414</td>
<td>2.637</td>
<td>2.728</td>
<td>0.849</td>
<td>8.647</td>
</tr>
<tr>
<td>(10) Option margin</td>
<td>5.134</td>
<td>1.893</td>
<td>15.693</td>
<td>0.475</td>
<td>19.040</td>
</tr>
</tbody>
</table>
corresponding excess return is then given by

\[r_T = V_T - \prod_{t=0}^{T-1} (1 + r^f_t). \]
(15)

Panel B of Table 2 presents summary statistics and Fig. 4 shows the average delta-hedged call and put returns over time.

Figure 4: Monthly averages of excess returns and expensiveness
This figure shows means of monthly excess returns and expensiveness of call and put options. Returns are trimmed at the 1% level.
3.2 Margin Rules

We calculate margin requirements for the different options in our sample in line with the rules and regulations applied in practice. As becomes clear from our model, the margin related to an option position does not only include the option margin itself, but also the capital requirement for the underlying stock position that is entered for hedging purposes.

For the options position, we define margins based on the CBOE margins manual. Although margins can be set individually by each exchange, in practice all major option exchanges follow the margin requirements defined by the CBOE.\(^{13}\) For a long position in a call or put option, the CBOE simply requires the payment of the option premium in full, such that no additional margin requirement is needed.\(^{14}\) For a (naked) short position in equity options, on the other hand, the margin rule is more sophisticated: Investors are required to post 20\% of the underlying price reduced by the current out-of-the-money amount, but at least 10\% of the underlying price for call options, and 10\% of the strike price for put options. More formally, the margin is defined as

\[
\begin{align*}
\text{Call: } M_F^- &= \max \left(0.2 \cdot S - (K - S)^+, 0.1 \cdot S \right), \\
\text{Put: } M_F^- &= \max \left(0.2 \cdot S - (S - K)^+, 0.1 \cdot K \right),
\end{align*}
\]

where \(K\) is the option’s strike price. Fig. 5 illustrates the short margin requirements for call and put options dependent on the option’s simple moneyness, i.e., \(S/K\) for calls and \(K/S\) for puts. The option margin \(m = M_F^- / F\) generally falls in the moneyness, but the relation is

\(^{13}\) The rules at CBOE and NYSE agree on margin requirements of option positions. Other option exchanges (specifically PHLX, NOM, ISE) explicitly demand margin requirements according to CBOE or NYSE margin rules.

\(^{14}\) For options with a time to maturity of more than 9 months, the margin requirement amounts to 75\% of the options’ price.
Figure 5: Cross-sectional variation of margin requirements

This figure visualizes the relation between simple moneyness and margins requirements of call and put options. We restrict our sample to options with 6 months to maturity and calculate average margin requirements for equally spaced moneyness bins. The solid green line show margin requirements for Black-Scholes options prices, using the empirical median (0.42037) as volatility parameter. The dotted red line shows the resulting empirical relation between moneyness and margins.

For a position in the underlying stock, a fixed fraction of the stock price is typically required as a margin. This fraction may depend on several stock characteristics like the stock price volatility or market liquidity and can be set individually by each broker. But as stated in the Federal Reserve Board’s Regulation T, the initial margin requirement has to be at least 50% of the stock’s price for any new long or short position. Throughout our empirical analysis,
we set the stock margin according to this minimal requirement: \(M_S = 0.5 \times S \). Nevertheless, as the hedging capital \(\tilde{m} = |\Delta| \frac{M_S}{F} \) differs for different options through their deltas and option prices, the overall margin for the stock position varies in the cross-section of options as well.\(^{15}\)

As shown in Fig. 5, the hedging capital requirement is a smooth, monotonously decreasing function of moneyness in a Black-Scholes economy. On the other hand, as visualized in Fig. 3, our model implies that hedging capital should be non-monotonic and bounded, with maximum value attained at a some moneyness between 0.8 and 0.9. The empirical data confirms this prediction remarkably well: For both option types, we observe a hump-shaped relation between moneyness and hedging capital. In any case, this analysis confirms that there is a distinct cross-sectional heterogeneity in both option margins and hedging capital requirements, which allows the identification of margin premia that are not predominantly driven by moneyness effects.

It is important to note that in practice, the margin an option dealer has to post might not be strictly the sum of the option margin and the hedging capital, as the reduced risk due to hedging activities may result in alleviations of option margin requirements. For example, the CBOE margin manual requires no margin for fully covered options positions. Therefore, the option margin effectively would only apply to the part of the position that is not covered, while the stock margin has to be posted for the whole stock position. As result, the relevant margin requirements depend on the specific portfolio of a given dealer and possible individual margin arrangements.

\(^{15}\) Under these assumptions, the hedging capital requirement is proportional to the option’s embedded leverage \(\Omega = |\Delta| \frac{S}{F} \). Frazzini and Pedersen (2012) find a negative premium on embedded leverage in the cross-section of option returns, which they attribute to end-user demand for leverage. As we analyze the effect of margin requirements conditional on demand pressure, the derived margin premium is different from the leverage effect and complements the theory on funding constraints in option markets.
We account for this difficulty in our empirical analysis by investigating the effect of the (naked) option margin and the hedging capital separately. If dealers do not hedge their option positions through the stock market in the real world, only the option margin should have an effect. On the other hand, if some dealers are exempt from option margin requirements due to their hedging activities, their hedging capital requirements still induce a margin premium. Finally, if dealers actually behave as predicted by our model, then both types of margins have to be posted and should play a role for option returns.

3.3 Demand and Price Pressure

As the margin premium of option returns depends on the sign of end-user demand according to our model, we need to measure the demand pressure in an option for our empirical analysis. We choose the option’s expensiveness, defined as the current implied volatility minus the underlying’s historical volatility, as a suitable proxy for demand pressure, motivated by two reasons. First, the analysis of Gârleanu et al. (2009) reveals that empirically, there is a strong relation between the price pressure of an option, as reflected by the expensiveness, and the corresponding demand pressure. Second, Proposition 3 shows that also in our model, a specific option is expensive (relative to a benchmark price for zero demand) whenever the end-user demand for that option is positive, and vice versa.

More precisely, we define an option’s expensiveness as the log difference between its implied volatility and the underlying stock’s historical volatility, measured as the standard deviation of log returns over the preceding 365 days.\footnote{We use historical volatilities provided by OptionMetrics. Other proxies for demand pressure are considered in Section 7.} Note that by this definition, we use the historical volatility simply as reference point and make no assumptions on any “true” value of volatility.
The time series of average expensiveness is visualized in Fig. 4.

4 Portfolio Sorts by Margin Requirements

We begin our analysis by sorting options based on their margin requirements. To this end, we first perform naive single sorts on the margin variables. Second, we consider a double sort, which sorts options based on their expensiveness first, before forming quintiles for the margin requirements within each expensiveness quintile. This procedure accounts for the prediction of our model that margin requirements influence option returns in different directions, depending on the sign of the demand pressure. For all our sorts, we rebalance the portfolios on the first day of each month, and we perform all sorts separately for calls and puts. We minimize the impact of outliers by excluding all options that belong to the overall highest and lowest percentile of any sort variable.

We calculate the value-weighted average excess return for each of the portfolios, where we define the corresponding weights as the value of total open interest at portfolio formation, in line with Frazzini and Pedersen (2012). Our portfolio analysis is based on the subsample of options with an absolute value of delta between 0.2 and 0.8, to reduce the impact of potential outliers. In the regression analysis presented in Section 5, we explicitly control for moneyness effects and therefore drop this filter on delta. We furthermore confirm in Section 7 that our results are robust to considering the full sample without moneyness filters.

To begin with, Table 3 shows results of call portfolios formed by sorting on option margins. In the first line, we see that for the naive sort by the option margin requirement over all expensiveness categories, returns exhibit no clear pattern and the long-short return is insignificant. These results suggest that it is difficult to identify a margin premium in the
Table 3: Portfolio sorts on option margins

This table shows delta-hedged excess returns of option margin quintile portfolios. The first line shows the result of an unconditional sort on option margins. The remaining lines show the corresponding results for double-sorted portfolios. Precisely, options are first sorted into expensiveness quintiles, then into option margin quintiles. For each of the resulting 25 portfolios, we report average excess returns, along with long-short returns in both dimensions. Significance levels are calculated using the procedure of Newey and West (1987) with 4 lags. All returns are given in monthly percent.

<table>
<thead>
<tr>
<th>Option margin</th>
<th>1 (low)</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5 (high)</th>
<th>5–1</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>−0.26</td>
<td>0.07</td>
<td>0.27</td>
<td>0.04</td>
<td>−1.18</td>
<td>−0.91</td>
</tr>
<tr>
<td>1 (low)</td>
<td>0.74</td>
<td>1.63**</td>
<td>2.52***</td>
<td>2.53**</td>
<td>2.41</td>
<td>1.67</td>
</tr>
<tr>
<td>2</td>
<td>0.09</td>
<td>0.54</td>
<td>0.84</td>
<td>1.01</td>
<td>0.81</td>
<td>0.73</td>
</tr>
<tr>
<td>3</td>
<td>−0.36</td>
<td>0.16</td>
<td>0.32</td>
<td>0.45</td>
<td>−0.24</td>
<td>0.12</td>
</tr>
<tr>
<td>4</td>
<td>−0.43</td>
<td>−0.14</td>
<td>0.18</td>
<td>−0.17</td>
<td>−2.00*</td>
<td>−1.58**</td>
</tr>
<tr>
<td>5 (high)</td>
<td>−1.63***</td>
<td>−1.48***</td>
<td>−2.09***</td>
<td>−3.36***</td>
<td>−6.47***</td>
<td>−4.83***</td>
</tr>
<tr>
<td>5–1</td>
<td>−2.37***</td>
<td>−3.11***</td>
<td>−4.61***</td>
<td>−5.88***</td>
<td>−8.88***</td>
<td>−6.51***</td>
</tr>
</tbody>
</table>

* *** p < 0.01; ** p < 0.05; * p < 0.1

cross-section of option returns when the option expensiveness is not accounted for. A possible reason for this unclear picture is that the margin premium changes the sign depending on the sign of the demand pressure in an option, as predicted by our model, such that positive and negative margin premia cancel each other out on aggregate.

We shed light on this issue by considering the results of the double sort, which delivers margin portfolio returns for different expensiveness quantiles. Indeed, we find that the long-short return is negative for high-expensiveness options and positive for low-expensiveness options, suggesting that option returns decrease with margin requirements for expensive options, but increase with the margin requirements for cheap options. For example, going options with high margins long and options with low margins short yields −4.83% for high-expensiveness options.
call options, but 1.67% for calls in the lowest expensiveness category.

Table 4 shows long-short returns and alphas of conditional sorts on option margins and hedging capital requirements, respectively, separated into calls (Panel A) and puts (Panel B). The first column in Panel A shows again the option margin long-short returns from Table 3, and the other returns are based on analogous sorts. Also for the sort by hedging capital requirements, we observe a negative long-short return for high-expensiveness options and a positive one for the low-expensiveness quantiles. These results hold for calls and for puts, with the only difference that the positive long-short return for cheap options is highly significant for puts, but not significant for calls. Overall, our sorts show that long-short returns with respect to margin requirements are monotonously decreasing in expensiveness, and the difference between the related portfolio return for high-expensiveness options and the one for low-expensiveness options is highly significantly negative in all cases.

All these findings confirm the predictions of our model. More precisely, Corollary 2a) predicts that option returns decrease with both the option margin and the hedging capital when end-users are long, which is clearly confirmed by the highly significantly negative long-short return for high-expensiveness options. For options in which end-users are short, Corollary 2b) predicts that option returns increase with the margin on the stock position as the option dealers are now on the other side of the market. On the other hand, there should be no cross-sectional effect of the (short) option margin in this case, as the option dealers are long and the relative (long) margin they have to post is identical for all options. It is clear, however, that the effects of option margins and hedging capital cannot strictly be separated by the portfolio sorts due to the strong correlation between option margins and hedging capital requirements in the data. As Fig. 6 illustrates, the margin posted for the stock position tends to be high whenever the option margin is high, and vice versa. Consequently, the positive
Table 4: Excess returns and alphas of expensiveness-margin portfolios

This table shows long-short returns and alphas of quintile portfolios on option margins and hedging capital, respectively. In the first line, we report results from unconditional sorts, the remaining lines correspond to double-sorted portfolios. Precisely, at the beginning of each month, options are first sorted into expensiveness quintiles, then into quintiles on option margins and hedging capital, respectively. We form margin long-short returns within each expensiveness quintile and report the corresponding time-series averages and alphas. Finally, the last line shows the return slope, i.e., the difference between long-short returns in the highest and lowest expensiveness quintile. Four factor alphas are computed with respect to market excess return, size, book-to-market (Fama and French, 1993) and momentum (Carhart, 1997). The five factor alpha includes an additional zero-beta index straddle return factor (Coval and Shumway, 2001). Significance levels are calculated using the procedure of Newey and West (1987) with 4 lags. All returns and alphas are given in monthly percent.

Panel A: Call options

<table>
<thead>
<tr>
<th>Expensiveness</th>
<th>Option margin long-short returns</th>
<th>Hedging capital long-short returns</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Return</td>
<td>α(4)</td>
</tr>
<tr>
<td>All</td>
<td>−0.91</td>
<td>0.10</td>
</tr>
<tr>
<td>1 (low)</td>
<td>1.67</td>
<td>2.82***</td>
</tr>
<tr>
<td>2</td>
<td>0.73</td>
<td>1.74*</td>
</tr>
<tr>
<td>3</td>
<td>0.12</td>
<td>1.26</td>
</tr>
<tr>
<td>4</td>
<td>−1.58**</td>
<td>−0.47</td>
</tr>
<tr>
<td>5 (high)</td>
<td>−4.83***</td>
<td>−3.76***</td>
</tr>
<tr>
<td>5–1</td>
<td>−6.51***</td>
<td>−6.58***</td>
</tr>
</tbody>
</table>

*** p < 0.01; ** p < 0.05; * p < 0.1

Panel B: Put options

<table>
<thead>
<tr>
<th>Expensiveness</th>
<th>Option margin long-short returns</th>
<th>Hedging capital long-short returns</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Return</td>
<td>α(4)</td>
</tr>
<tr>
<td>All</td>
<td>0.15</td>
<td>1.12</td>
</tr>
<tr>
<td>1 (low)</td>
<td>1.84*</td>
<td>2.57***</td>
</tr>
<tr>
<td>2</td>
<td>1.51*</td>
<td>2.20***</td>
</tr>
<tr>
<td>3</td>
<td>0.98</td>
<td>1.79**</td>
</tr>
<tr>
<td>4</td>
<td>0.10</td>
<td>1.26</td>
</tr>
<tr>
<td>5 (high)</td>
<td>−2.92**</td>
<td>−1.76</td>
</tr>
<tr>
<td>5–1</td>
<td>−4.76***</td>
<td>−4.33***</td>
</tr>
</tbody>
</table>

*** p < 0.01; ** p < 0.05; * p < 0.1
This figure visualizes the correlation of option margins and hedging capital. We trim both option margins and hedging capital requirements at the 5 percent level and divide the remaining values into 200 by 200 bins. For each bin, the color at the corresponding coordinate represents the frequency of this combination.

effect of the hedging capital requirement is also present in the long-short portfolios resulting from a sort by option margins, leading to very similar portfolio returns. It follows that the positive return in all cases, which is highly significant for put options but insignificant for calls, supports Corollary 2b) of our model, although a separation of option margin and hedging capital effects is not possible through portfolio sorts. We address this issue in Section 5, where we incorporate and disentangle both effects by running Fama-Macbeth regressions.

We finally consider different risk adjustments of the portfolio returns to rule out non-margin related effects in our return series. Specifically, we report alphas with respect to the Carhart (1997) four factor model, which includes the Fama and French (1993) factors (market excess
return, size, and value) plus momentum. In addition, we report 5-factor alphas using an additional option volatility factor in line with Coval and Shumway (2001). With these risk adjustments, the positive long-short returns for low-expensiveness calls become significant now as well, while there are no notable changes for the other results.

5 Regression Analysis

The portfolio sorts in the previous section strongly suggest that a significant margin premium is priced in the cross-section of option returns, in line with the predictions of our model. To corroborate and extend this evidence, we perform Fama-MacBeth regressions on our option sample. Running Fama-MacBeth regressions enhances our analysis along three dimensions: First, we estimate actual slope coefficients for margin-related effects instead of relying on return differences of high- and low-margin portfolios. Second, the regression approach allows us to include several control variables as potential drivers of option returns. Third, by including both types of margin requirements – the option margin and the hedging capital – in a regression model, we can disentangle the related effects.

As we still want to estimate the effect of margin requirements for different expensiveness quantiles, we run the Fama-MacBeth regressions in a segmented way. That is, we sort all available options into five expensiveness groups \(q_1, \ldots, q_5 \) at the beginning of a month, again excluding options in the lowest and highest expensiveness percentile. Then, we run monthly cross-sectional regressions of delta-hedged option returns on option margins \(m \) and hedging capital \(\tilde{m} \), allowing for different coefficients within each expensiveness group:

\[
 r_{i,t+1} = \alpha + \sum_{k=1}^{5} \left(1_{\{i \in q_k\}} \beta_k m_{i,t} + 1_{\{i \in q_k\}} \gamma_k \tilde{m}_{i,t} \right) + \text{control variables} + \varepsilon_{i,t+1}, \quad (17)
\]
where $1_{\{i \in q_k\}} = 1$ if option i belongs to expensiveness group q_k, and zero otherwise.

As we have seen in Section 4, margin requirements induce a similar premium in call and put option returns. For brevity, we show therefore in Table 5 the regression results for the combined sample of both option types, excluding deep-out-of-the-money puts (i.e., with delta larger than -0.2). These put options act as insurance against crises and are therefore likely subject to different demand and price pressures than the remaining option sample. In addition, their outlying high returns during periods of market distress makes inference about margin premia more imprecise.

Regression models (1) and (2) consider univariate segmented regressions for the option margin and the hedging capital requirement, respectively. These regressions unanimously confirm the results of the portfolio sorts: In both cases, there is a significantly negative coefficient for margin requirements in the high-expensiveness option quantiles, and a significantly positive one for low-expensiveness options. The significant effect of the option margin for expensive options can again be explained by the strong correlation with the hedging capital variable, which is “omitted” in model (1).

We enrich these models by including several option-, stock-, and firm-specific control variables in model (3) and (4). In particular, we control for the options’ open interest, delta, time to maturity, gamma and vega. Controls for stock characteristics are chosen along the lines of Christoffersen et al. (2015): We include the underlying stock’s GARCH volatility estimate and its systematic risk proportion (defined as the square root of the R-square from the regression of stock returns on Fama-French and momentum factors, cf. Duan and Wei (2009)). Finally, firm size (measured as the logarithm of market capitalization) and firm leverage (identifying debt with the sum of long-term debt and the par value of preferred stock) are included. We

17 Separate analyses for call and put options show similar results, which are available upon request.
Table 5: Fama-MacBeth regressions

This table reports Fama-MacBeth regression results of monthly delta-hedged option returns. The considered option sample consists of all call options and put options with an ex-ante delta of at most -0.2. Dependent variables are the options’ margin and hedging capital requirements. We estimate segmented regression coefficients based on expensiveness quintiles, which are formed at the beginning of each month. Below, option margin (k) and hedging capital (k) refer to the respective margin variable for options within the k-th expensiveness quintile. Control variables on the option level are the relative bid-ask spread, the logarithm of the option’s open interest, delta, gamma, vega, as well as time to maturity in days. In addition, we include a GARCH estimate of the underlying stock’s historical volatility, its systematic risk proportion, as well as the firms’ size and balance sheet leverage. All coefficients and the average cross-sectional R^2 are in percent, significances are based on Newey-West standard errors with 4 lags.

<table>
<thead>
<tr>
<th>Model</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option margin (1)</td>
<td>0.79***</td>
<td>0.80***</td>
<td>0.29</td>
<td>0.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Option margin (2)</td>
<td>0.07</td>
<td>0.03</td>
<td>0.27**</td>
<td>0.22*</td>
<td>0.28</td>
<td>0.28</td>
</tr>
<tr>
<td>Option margin (3)</td>
<td>0.36**</td>
<td>0.43***</td>
<td>0.57**</td>
<td>0.49**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Option margin (4)</td>
<td>0.93***</td>
<td>1.00***</td>
<td>0.99***</td>
<td>0.88***</td>
<td>0.86***</td>
<td>0.86***</td>
</tr>
<tr>
<td>Option margin (5)</td>
<td>1.70***</td>
<td>1.76***</td>
<td>1.17***</td>
<td>1.05***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hedging capital (1)</td>
<td>0.88**</td>
<td>0.70*</td>
<td>0.86***</td>
<td>0.82***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hedging capital (2)</td>
<td>0.06</td>
<td>0.39</td>
<td>0.52**</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
</tr>
<tr>
<td>Hedging capital (3)</td>
<td>0.59**</td>
<td>1.01***</td>
<td>0.28</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Hedging capital (4)</td>
<td>1.24***</td>
<td>1.72***</td>
<td>0.08</td>
<td>0.32</td>
<td>0.32</td>
<td>0.32</td>
</tr>
<tr>
<td>Hedging capital (5)</td>
<td>2.40***</td>
<td>2.93***</td>
<td>0.87***</td>
<td>1.30***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log(open interest)</td>
<td>0.25***</td>
<td>0.27***</td>
<td>0.23***</td>
<td>0.23***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delta</td>
<td>0.40***</td>
<td>0.17</td>
<td>0.36**</td>
<td>0.36**</td>
<td>0.36**</td>
<td>0.36**</td>
</tr>
<tr>
<td>Time to maturity</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Gamma</td>
<td>0.79</td>
<td>9.88**</td>
<td>1.33</td>
<td>1.33</td>
<td>1.33</td>
<td>1.33</td>
</tr>
<tr>
<td>Vega</td>
<td>0.01</td>
<td>0.05***</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Stock volatility</td>
<td>0.63***</td>
<td>1.13***</td>
<td>0.91***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systematic risk</td>
<td>1.12</td>
<td>1.08</td>
<td>0.72</td>
<td>0.72</td>
<td>0.72</td>
<td>0.72</td>
</tr>
<tr>
<td>Firm size</td>
<td>0.27**</td>
<td>0.31**</td>
<td>0.25**</td>
<td>0.25**</td>
<td>0.25**</td>
<td>0.25**</td>
</tr>
<tr>
<td>Firm leverage</td>
<td>0.59</td>
<td>0.77</td>
<td>0.69</td>
<td>0.69</td>
<td>0.69</td>
<td>0.69</td>
</tr>
<tr>
<td>Constant</td>
<td>0.97*</td>
<td>1.85***</td>
<td>2.72</td>
<td>0.85**</td>
<td>0.56</td>
<td>0.56</td>
</tr>
<tr>
<td>Average R^2</td>
<td>5</td>
<td>4.12</td>
<td>6.08</td>
<td>5.72</td>
<td>5.76</td>
<td>6.84</td>
</tr>
</tbody>
</table>

*** $p < 0.01$; ** $p < 0.05$; * $p < 0.1$
see that our results are extremely robust to controlling for all these effects. While especially
the options’ bid-ask spread, the open interest, and the underlying stock volatility seem to be
significant drivers of option returns, the effect of margin requirements is almost unaffected
when we include these variables.

We finally run regressions that include both the option margin and the hedging capital
requirement as explanatory variables, see model (5) and (6). Remarkably, for call options
(see Table 5) model (5) shows a separation of both effects which is exactly in line with
Corollary 2b) our model: While the option margin does not have a significant effect on
option returns in the low-expensiveness quantile, the effect of hedging capital requirements is
significantly positive. This finding persists when we include control variables in model (6).
By disentangling these effects, the results of the regression analysis provide strong additional
evidence for a margin premium in the cross-section of option returns.

6 Option-Market Implied Funding Liquidity

We apply the results of this paper to define an option-market based measure for funding
liquidity. As motivated by Chen and Lu (2016) and Golez et al. (2016), market-based funding
liquidity measures may be more suitable to describe the actual funding situation of investors
than measures based on stated interest rates, such as the TED spread. We have seen in the
previous sections that margin requirements are priced in the cross-section of options, which is
reflected by corresponding long-short portfolio returns. The idea is now that the magnitude
of the margin premium – and therefore the portfolio returns – should vary in the time series
with the funding costs, as predicted by Corollary 2c).

We formalize this idea in the following. Consider the double sorts from Section 4 by
expensiveness and capital requirements again, and recall that the option margin and the hedging capital requirement are strongly correlated. Therefore we can assume that the average option margin is also highest in the highest hedging capital quantile, and vice versa. On the low expensiveness side, the difference of required hedging capital is priced across options and captured by the corresponding long-short return, where the magnitude of the premium depends on the funding liquidity. More formally, we obtain from Proposition 2 that the expected long-short return is

\[E_t \left(l s_{t+1}^1 \right) = E_t \left(r_{t+1}^{1.5} - r_{t+1}^{1.1} \right) = \psi_t \left(\tilde{m}_{t}^{1.5} - \tilde{m}_{t}^{1.1} \right), \tag{18} \]

where \(r_{t+1}^{i,j} \) is the average return and \(\tilde{m}_{t}^{i,j} \) is the average hedging capital of the \(j \)-th margin quintile portfolio within the \(i \)-th expensiveness quintile at time \(t \). Normalizing this return by \(m_t^1 = \tilde{m}_{t}^{1.5} - \tilde{m}_{t}^{1.1} \) therefore yields a measure for the market’s funding spread \(\psi_t \).

Similarly, both the difference in option margins and in required hedging capital is priced for high expensiveness options, and the magnitude of effects is driven by the funding liquidity situation. In this case, we obtain

\[E_t \left(l s_{t+1}^5 \right) = E_t \left(r_{t+1}^{5.1} - r_{t+1}^{5.5} \right) = \psi_t \left(m_{t}^{5.5} - m_{t}^{5.1} + \tilde{m}_{t}^{5.5} - \tilde{m}_{t}^{5.1} \right), \tag{19} \]

for the respective long-short return, where \(m_{t}^{i,j} \) is the average of the option margin in the \(i \)-th expensiveness and \(j \)-th margin portfolio. This return, normalized by \(m_t^5 = \left(m_{t}^{5.5} - m_{t}^{5.1} + \tilde{m}_{t}^{5.5} - \tilde{m}_{t}^{5.1} \right) \), proxies the funding spread \(\psi_t \) as well.

\(^{18}\) To fix ideas, we assume that options in the lowest (highest) expensiveness quintile are throughout subject to negative (positive) end-user demand pressure. In addition, we assume that there either is no unhedgeable risk or that the premia on unhedgeable risk are homogeneous across expensiveness-margin portfolios, so that they cancel out.
While theoretically, we could use either of these two normalized portfolio returns to measure funding liquidity, we combine both of them to enhance the empirical robustness. Precisely, our measure for funding liquidity is the normalized sum of the two long-short portfolios,

$$\hat{\psi}_{t,t+1} = \frac{ls_{1,t+1} + ls_{5,t+1}}{m_{1,t} + m_{5,t}}.$$ \hspace{1cm} (20)

As this measure combines and averages information about funding liquidity from both low and high expensiveness options, it is more robust to market noise affecting one of these two categories. Furthermore, as demand pressure for options is time-varying, the demand in the low (high) expensiveness quantile might be close to zero in times of high (low) overall demand pressure, instead of being clearly negative (positive). Combing the measures from both expensiveness categories makes our measure robust to such effects, as a weaker effect in one category will be offset by a stronger effect in the other category.

We calculate this measure for all options with an absolute value of delta between 0.2 and 0.8, separately for call and put options, and form the equal-weighted average of the two. Fig. 7 shows the resulting time series of our funding liquidity measure, together with the 3-month TED spread. Although our market-based measure might potentially be a better proxy of funding liquidity than standard interest rate spreads, as noted above, the comparison still makes sense to see if there are any common patterns. We observe a co-movement of both measures, especially when we take a 3-months rolling mean of our market-based measure. It is eye-catching that the co-movement is particularly strong during the financial crisis from 2007 to 2009, when the issue of funding liquidity became very important for financial investors.

As a formal test of the relation between these two funding liquidity measures, we run time-series regressions of our measure on the TED spread and control variables. The results are
Figure 7: Time Series of the funding liquidity measure

This figure shows our measure of funding liquidity, given by the normalized sum of two margin long-short portfolios. In addition, we show rolling averages of the measure over the preceding and following 3 months, and the TED spread, which is standardized to match the mean and variance of the rolling average series. All variables are given in monthly percent.

As shown in Table 6. As expected, our funding proxy is positively related to the TED spread at portfolio formation. On the other hand, as funding conditions tighten, future expected margin premia become larger and contemporaneous realized margin long-short returns should become smaller. This intuition is confirmed by the second specification, where we find a significant negative link between our funding proxy and changes in the TED spread. Finally, as shown by the remaining regression models, these findings are robust to the inclusion of average option returns and lagged proxy returns.
Table 6: Regression analysis of the funding liquidity measure

This table shows results from time series regressions of the funding liquidity measure on the lagged 3-month TED spread and its contemporary change. We include the average return of all considered options and the lagged return of the proxy variable as controls. All variables are given in monthly percent. The standard errors are calculated using the Newey-West estimator with a lag length of 4 months.

<table>
<thead>
<tr>
<th>Model</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lagged TED spread</td>
<td>4.62**</td>
<td>3.08*</td>
<td>5.30**</td>
<td>4.51***</td>
<td>3.62**</td>
</tr>
<tr>
<td></td>
<td>(1.92)</td>
<td>(1.75)</td>
<td>(2.07)</td>
<td>(1.70)</td>
<td>(1.82)</td>
</tr>
<tr>
<td>Change in TED spread</td>
<td>-7.79***</td>
<td>-6.97***</td>
<td>-6.30**</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.91)</td>
<td>(2.46)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average option return</td>
<td>-0.01*</td>
<td>-0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.01)</td>
<td>(0.01)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lagged proxy return</td>
<td></td>
<td></td>
<td></td>
<td>0.11</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.10)</td>
<td>(0.10)</td>
</tr>
<tr>
<td>Constant</td>
<td>0.30***</td>
<td>0.36***</td>
<td>0.26***</td>
<td>0.25***</td>
<td>0.29***</td>
</tr>
<tr>
<td></td>
<td>(0.09)</td>
<td>(0.09)</td>
<td>(0.10)</td>
<td>(0.09)</td>
<td>(0.10)</td>
</tr>
<tr>
<td>Observations</td>
<td>212</td>
<td>211</td>
<td>212</td>
<td>211</td>
<td>210</td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>3.0</td>
<td>6.0</td>
<td>4.2</td>
<td>3.6</td>
<td>6.2</td>
</tr>
</tbody>
</table>

*** $p < 0.01$; ** $p < 0.05$; * $p < 0.1$

In summary, we can conclude that our option-market based funding liquidity measure can be taken as a serious proxy for the funding liquidity of market participants. Besides that, the established connection between our proxy and the TED spread ultimately provides strong evidence for Corollary 2c) of our model.

7 Robustness Checks

We perform several robustness checks to ensure that our results do not depend on the specific design of our empirical analysis. In particular, we show that our findings are robust to modifications of the sample selection procedure as well as to alternative specifications of the
Margin requirements and other important variables.

Margin variables In our model, we assume independent option and stock margins, neglecting the possible margin reductions due to hedging activities. In this regard, it is important to note that the margin effects are not an artifact of these simple margin proxies, but hold as well under more sophisticated portfolio margin rules.

Specifically, the CBOE introduced new portfolio margin rules in April 2007, which may be used as an alternative to the strategy-based margin requirements. Under portfolio margining, margin requirements are calculated to reflect the overall risk of an investor’s whole portfolio. To calculate the margin requirements, an investor’s option positions are grouped by their respective underlying, together with potential positions in the underlying itself. Each of the resulting sub-portfolios is then evaluated at ten hypothetical market scenarios. For example, in the case of equity options, the price of the underlying asset is assumed to move along ten equidistant points in the range between -15% and $+15\%$ from the current market value. For each scenario, option values are calculated with a theoretical model, resulting in a hypothetical value for the sub-portfolio. The margin requirement for this sub-portfolio is then defined as the least portfolio value among these evaluation points, but at least $.375 per option contract. The whole margin requirement for the investor is then defined as the sum of the margin requirements of the sub-portfolios.

Following Leippold and Su (2015), we calculate margin requirements for hypothetical portfolios using the Black-Scholes model. Table 7 shows the resulting margin premia for a (degenerate) portfolio of a naked short option position and a delta-hedged short option position, respectively. In both cases, we find decreasing margin long-short returns and a highly significant return slope, forming a similar pattern as before.
Table 7: Conditional sorts on portfolio margins

This table shows long-short returns on portfolio margins, conditional on expensiveness. Specifically, we sort options into expensiveness quintiles, then into quintiles of the portfolio margin of a naked short option and a delta-hedged short position, respectively. We report average long-short returns per expensiveness group and the resulting return slope across expensiveness. All returns are given in monthly percent, significances are based on Newey and West (1987) standard errors with 4 lags.

<table>
<thead>
<tr>
<th>Expensiveness</th>
<th>Call options</th>
<th>Put options</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Naked</td>
<td>Delta-hedged</td>
</tr>
<tr>
<td>1</td>
<td>2.01*</td>
<td>1.48</td>
</tr>
<tr>
<td>2</td>
<td>1.05</td>
<td>0.51</td>
</tr>
<tr>
<td>3</td>
<td>0.40</td>
<td>-0.07</td>
</tr>
<tr>
<td>4</td>
<td>-1.67**</td>
<td>-2.35***</td>
</tr>
<tr>
<td>5</td>
<td>-4.70***</td>
<td>-6.14***</td>
</tr>
<tr>
<td>5–1</td>
<td>-6.71***</td>
<td>-7.62***</td>
</tr>
</tbody>
</table>

*** p < 0.01; ** p < 0.05; * p < 0.1

Moneyness-Maturity subsamples Our main analyses are based on a rather large option sample. To verify that our results are not driven by moneyness patterns or outliers, we form double-sorted portfolios for a range of subsamples. Specifically, we group options into five bins by months to maturity and the absolute value of delta, respectively. For each subsample, we run a similar portfolio analysis as discussed in Section 4. That is, we first sort options into expensiveness quintiles. Then, we form margin quintiles conditional on expensiveness and calculate the corresponding margin long-short return as difference between the returns of the highest and lowest margin quintile portfolio. To quantify the overall margin effect, we calculate the difference between the margin long-short return in the highest and lowest expensiveness quintile. Table 8 shows the time-series averages of these return slopes. With the only exception of deep in-the-money put options, all return slopes are significantly negative, underpinning the previous results.
Table 8: Delta-maturity subsample analysis

In this table, we analyze the magnitude of conditional margin long-short returns for several subsamples on delta and time to maturity. Within each subsample, we first sort all options into expensiveness quintiles. Then, we form margin quintiles conditional on expensiveness. To quantify the margin effect, we report the average difference of margin-long short returns in the highest and lowest expensiveness quantil. Below, we report time-series averages of these return slopes for each subsample. Significance levels are calculated using the procedure of Newey and West (1987) with 4 lags. All returns and alphas are given in monthly percent.

Panel A: Subsamples on delta

<table>
<thead>
<tr>
<th>Abs. delta</th>
<th>Call options</th>
<th>Put options</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0–0.2</td>
<td>−23.05***</td>
<td>−7.24***</td>
</tr>
<tr>
<td>0.2–0.4</td>
<td>−9.92***</td>
<td>−4.59***</td>
</tr>
<tr>
<td>0.4–0.6</td>
<td>−3.26***</td>
<td>−3.28***</td>
</tr>
<tr>
<td>0.6–0.8</td>
<td>−2.18***</td>
<td>−3.14***</td>
</tr>
<tr>
<td>0.8–1.0</td>
<td>−1.63***</td>
<td>−1.94***</td>
</tr>
</tbody>
</table>

Panel B: Subsamples on time to maturity

<table>
<thead>
<tr>
<th>Months</th>
<th>Call options</th>
<th>Put options</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>−8.92***</td>
<td>−7.90***</td>
</tr>
<tr>
<td>2–3</td>
<td>−5.01***</td>
<td>−0.51</td>
</tr>
<tr>
<td>4–6</td>
<td>−2.65***</td>
<td>−1.79***</td>
</tr>
<tr>
<td>7–12</td>
<td>−1.21</td>
<td>−0.76</td>
</tr>
<tr>
<td>> 12</td>
<td>−1.26*</td>
<td>−1.74***</td>
</tr>
</tbody>
</table>

Further robustness checks The margin effect persists not only in subsamples, but can also be found in the sample of options without any restriction on moneyness. As shown in the first column of Table 9, margin long-short returns are monotonously decreasing along expensiveness, leading to a return slope of −11.99% per month for call options, which almost twice as large as the corresponding premium of the subsample of options with an absolute value of delta between 0.2 and 0.8. On the other hand, for put options, margin long-short returns are by far not as pronounced as before, which is mainly caused by deep out-of-the-money options. In market declines, these options realize enormous returns, which distort the portfolio sorts. Indeed, as shown in the second column, the overall margin effect for put options increases from 2.77% to 6.55% per month if we remove option-months containing at least one daily option return of more than 1000%. So even this rather innocuous filter
criterion has a significant impact on put results, whereas call returns show almost no change. As shown in the third column, we also find a more pronounced margin effect if we change our specification from value weighting to equal weights. With equal weighting, we have larger positions in illiquid options, where the role of option dealers is more important, resulting in larger long-short return due to their funding costs.

The margin effect is also robust to other choices of the expensiveness proxy. For example, we repeat our analysis with a historical baseline volatility estimated over the preceding 60 instead of 365 days. Although this measure adjusts faster to changing stock volatility, it is subject to higher estimation error. Nevertheless, we also find a significant margin effect under this specification.

To rule out potential distortions by small firms with illiquid options, we repeat our analysis also for the subsample consisting of options on S&P 500 index (SPX) members. As shown in the fifth column, we find for call options an average overall margin premium of 4.39%, which is a bit smaller than the premium of 6.51% in the full sample, but still highly significant.

We have argued that the conditional margin premia are different from the unconditional leverage effect documented by Frazzini and Pedersen (2012). As an additional check on this hypothesis, in the last column, we present regression alphas of long-short returns with respect to the betting against beta (BAB) leverage factor, which goes long low leverage options and short high leverage options. These alphas are decreasing in expensiveness for both call and put options, but only significant for put options. Nevertheless, the return slope along expensiveness is for both option types highly significant, as expected.
Table 9: Further robustness checks on conditional margin long-short returns

This table shows several robustness checks on the conditional margin long-short returns given in Table 4. The first column shows analogous long-short returns for all options, i.e., without any filter on delta. The second column is also based on the full cross-section of options, but removing options-months containing daily option returns of more than 1000%. In the third column, we repeat the original analysis using equally weighted portfolios. The fourth column shows results for another expensiveness measure, where we used a 60 day window to calculate the historical baseline volatility. We also report margin long-short returns for options on SPX index members, and alphas with respect to the betting against beta (BAB) factor of Frazzini and Pedersen (2012). Significances are based on Newey and West (1987) standard errors with 4 lags.

Panel A: Call Options

<table>
<thead>
<tr>
<th>Expensiveness</th>
<th>All</th>
<th>All (filtered)</th>
<th>Equal weights</th>
<th>IVHV(60)</th>
<th>SPX members</th>
<th>BAB alpha</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.31</td>
<td>0.74</td>
<td>5.38***</td>
<td>1.94</td>
<td>0.15</td>
<td>2.03*</td>
</tr>
<tr>
<td>2</td>
<td>−1.60</td>
<td>−2.17</td>
<td>2.26**</td>
<td>0.53</td>
<td>0.20</td>
<td>1.12</td>
</tr>
<tr>
<td>3</td>
<td>−3.29**</td>
<td>−3.44**</td>
<td>−0.05</td>
<td>−0.39</td>
<td>−0.30</td>
<td>0.33</td>
</tr>
<tr>
<td>4</td>
<td>−5.76***</td>
<td>−6.01***</td>
<td>−2.50***</td>
<td>−1.68**</td>
<td>−2.46**</td>
<td>−1.54*</td>
</tr>
<tr>
<td>5</td>
<td>−10.68***</td>
<td>−10.86***</td>
<td>−6.67***</td>
<td>−4.60***</td>
<td>−4.24***</td>
<td>−4.39***</td>
</tr>
<tr>
<td>5–1</td>
<td>−11.99***</td>
<td>−11.59***</td>
<td>−12.05***</td>
<td>−6.54***</td>
<td>−4.39***</td>
<td>−6.42***</td>
</tr>
</tbody>
</table>

*** p < 0.01; ** p < 0.05; * p < 0.1

Panel B: Put Options

<table>
<thead>
<tr>
<th>Expensiveness</th>
<th>All</th>
<th>All (filtered)</th>
<th>Equal weights</th>
<th>IVHV(60)</th>
<th>SPX members</th>
<th>BAB alpha</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.29**</td>
<td>3.20**</td>
<td>4.22***</td>
<td>1.84*</td>
<td>0.31</td>
<td>1.93*</td>
</tr>
<tr>
<td>2</td>
<td>2.93**</td>
<td>2.85*</td>
<td>2.69***</td>
<td>1.39</td>
<td>0.72</td>
<td>1.79*</td>
</tr>
<tr>
<td>3</td>
<td>2.05</td>
<td>1.71</td>
<td>1.18</td>
<td>0.67</td>
<td>0.17</td>
<td>1.24</td>
</tr>
<tr>
<td>4</td>
<td>0.19</td>
<td>−0.35</td>
<td>−0.03</td>
<td>0.05</td>
<td>−1.00</td>
<td>0.35</td>
</tr>
<tr>
<td>5</td>
<td>0.53</td>
<td>−3.35</td>
<td>−3.86***</td>
<td>−2.02*</td>
<td>−0.99</td>
<td>−2.48**</td>
</tr>
<tr>
<td>5–1</td>
<td>−2.77</td>
<td>−6.55***</td>
<td>−8.08***</td>
<td>−3.86***</td>
<td>−1.30</td>
<td>−4.41***</td>
</tr>
</tbody>
</table>

*** p < 0.01; ** p < 0.05; * p < 0.1
8 Conclusion

This paper shows that there is a significant margin premium priced in the cross-section of equity option returns. The margin premium compensates funding-constrained option dealers for the capital that is tied up when they satisfy the option demand of end-users. In addition to the margin requirement for the option itself, capital is also required for hedging the options position in the underlying market. To identify the margin premium empirically, it is critical to realize that its sign depends on the option dealers taking the long or short side of the market. Taking this into account, sorting options by their margin requirements reveals that option returns decrease with margins when option dealers are short, but increase with the margin requirements when option dealers are on the long side of the market. We confirm these findings by Fama-MacBeth regressions on our option sample, controlling for several other drivers of option returns known from the literature.

Finally, we use these insights to construct an option-market based measure for funding liquidity based on the time series of margin long-short portfolio returns. Our measure is significantly correlated with TED spread and shows a similar pattern especially during the recent financial crisis, which ultimately confirms that margin requirements affect option returns through the funding channel. For future research, it might be a promising idea to apply our funding liquidity measure for explaining risk premia in the underlying stock market or hedge fund returns. It will be interesting to see how our measure performs in comparison to other market-based funding liquidity measures that are developed in the recent time (see Chen and Lu, 2016; Golez et al., 2016).
References

A Proofs

Proof of Proposition 1. The maximization problem given in Eq. (1) together with Eq. (3) is equivalent to maximizing the function

\[
f(\theta, q) = (\eta + \theta)\bar{\mu}_S + q\bar{\mu}_F - \frac{\gamma}{2} \left((\eta + \theta)^2 \sigma_S^2 + 2(\eta + \theta)q\sigma_{SF} + q^2 \sigma_F^2 \right) \\
- \psi \left(|\theta| \tilde{M} + |q| \left(1_{\{q>0\}}M^+ + 1_{\{q<0\}}M^- \right) \right). \tag{21}
\]

For \(q, \theta \neq 0 \), this function is differentiable, and setting both partial derivatives to zero yields

\[
\theta = \frac{1}{\gamma \sigma_S^2} \left(-q\gamma \sigma_{SF} - \psi \text{sgn}(\theta)\tilde{M} \right), \\
q = \frac{1}{\gamma \sigma_F^2} \left(\bar{\mu}_F - (\eta + \theta)\gamma \sigma_{SF} - \psi \text{sgn}(q)M^{\text{sgn}(q)} \right). \tag{22}
\]

In equilibrium, we have \(q = -d \), which implies \(\theta \) as given by Eq. (4). The solution is defined (and optimal) as long as \(|\gamma \sigma_{SF}d| > \psi \tilde{M} \).

Proof of Proposition 2. Inserting Eq. (4) in Eq. (22), we get

\[
q = \frac{1}{\gamma \sigma_F^2} \left(\bar{\mu}_F - \left(\eta + (d\Delta - \psi \frac{\text{sgn}(d\Delta)\tilde{M})}{\gamma \sigma_S} \right) \gamma \sigma_{SF} - \psi \text{sgn}(q)M^{\text{sgn}(q)} \right) \tag{23}
\]

\[\Leftrightarrow \bar{\mu}_F = \Delta \bar{\mu}_S - d\gamma (\sigma_F^2 - \Delta \sigma_{SF}) - \text{sgn}(d)(M + |\Delta| \tilde{M}).\]

Rearranging to (delta-hedged) option returns gives the results.

Proof of Proposition 3. By construction, the dealer’s optimal excess stock position is \(\theta = 0 \) for zero option demand. This implies that the optimal option position is given by

\[
q = \frac{1}{\gamma \sigma_S^2} \left(\bar{\mu}_F - \eta \gamma \sigma_{SF} \right) \overset{!}{=} 0, \tag{24}
\]

which in turn is equivalent to

\[
\bar{\mu}_F = \eta \gamma \sigma_{SF} = \Delta \bar{\mu}_S. \tag{25}
\]

Rearranging this formula yields

\[
F_t = \mathbb{E} \left(\frac{F_{t+1} - \Delta \bar{\mu}_S}{R^t} \right) \equiv F_t^0. \tag{26}
\]
Using this notation, Eq. (7) is just a reformulation of Eq. (5).

Note that

\[\sigma^2_F - \Delta \sigma_{SF} = \sigma^2_F (1 - \frac{\sigma^2_F}{\sigma^2_S}) = \sigma^2_F (1 - (\text{corr}(F_{t+1}, S_{t+1}))^2) \geq 0. \]

Therefore, we get

\[F_t - F^0_t = d \gamma \frac{\sigma^2_F - \Delta \sigma_{SF}}{R^f} + \text{sgn}(d) \frac{\psi}{R^f} \left(M + |\Delta| \hat{M} \right), \tag{27} \]

implying \(\text{sgn}(d) = \text{sgn}(F_t - F^0_t) \).

\[\square \]

B Simulation Algorithm

To begin with, we simulate \(N \) stock price paths using the dynamics specified in Eqs. (11) and (12). Then, we specify the option to be simulated by its time to maturity \(T \), strike price \(K \), and the associated demand level \(d \), which is assumed to be constant over time.

At time \(T \), the call option price corresponding to the \(i \)-th sample path is given by

\[F(T, i) = \max(S(T, i) - K, 0). \tag{28} \]

Given option prices in \(t + 1 \), we calculate the time-\(t \) option prices by backward induction, as implied by Proposition 3:

\[F_t = \frac{1}{R^f} \left(E_t(F_{t+1}) - \sigma_{SF}^2 \left(E_t(S_{t+1}) - R^f S_t \right) + d \gamma \left(\sigma^2_F - \frac{\sigma^2_{SF}}{\sigma^2_S} \right) \right. \]

\[\left. + \text{sgn}(d) \psi \left(M_F + \left| \sigma_{SF} \right| M_S \right) \right). \tag{29} \]

For this step, we need estimates for \(E_t(F_{t+1}), E_t(S_{t+1}), \sigma^2_F = \text{var}_t(F_{t+1}), \sigma^2_S = \text{var}_t(S_{t+1}), \) and \(\sigma_{SF} = \text{cov}_t(S_{t+1}, F_{t+1}) \). All of these terms are in fact conditional expectations, so they can be estimated using the regression technique proposed by Longstaff and Schwartz (2001).

For example, we estimate \(E_t(F_{t+1}) \) as the fitted value \(\hat{F}^i_{t+1} \) from a cross-sectional regression of \(F_{t+1} \) on several time-\(t \) state variables across all sample paths:

\[F^i_{t+1} = \alpha_t + \sum_{j=1}^{n_t} \sum_{k=1}^{n_y} \beta_{ijk}^j y^i_{t,j,k} + \epsilon^i_{t+1} \tag{30} \]

We obtain suitable dependent variables \(y^i_{t,j,k} = f^k(x^i_t) \) by evaluating the first five weighted Laguerre polynomials \(f^k \), as defined in Longstaff and Schwartz (2001), at several time-\(t \) state
variables $x^{i,j}_t$. A natural choice for a state variable is the underlying stock price, $x^{i,1}_t = S^i_t$, but we also include the Black-Scholes call option price, $x^{i,2}_t = C^i_t$, as well as the respective square roots and pairwise products of these variables. The inclusion of the Black-Scholes option price increases the goodness of fit due to its similarity to the modeled option price, and being just a function of time-t variables, it is a viable choice for an additional state variable. The square root terms introduce odd powers of the stock and Black-Scholes option prices to the set of state variables, which significantly improves the estimation results.

The variances and covariances are estimated in a similar fashion. For example, $(\sigma^2_F)_t^i$ is estimated as the fitted value from a regression of $(F^i_{t+1} - E_t(F^i_{t+1}))^2$ on the dependent variables introduced above, using \hat{F}^i_{t+1} as estimate for $E_t(F^i_{t+1})$.

Finally, we impose several constraints on the estimates to take account of basic statistical and economical properties. For example, we require that conditional variances are positive, that the implied correlation between the stock and call option prices is always between zero and one, and that the resulting option prices are positive and less than the stock price. If an estimate violates one of these constraints, we replace the estimate with the respective boundary value. In any case, in a frictionless economy with a diffusive stock price process, simulated option prices fit theoretical Black-Scholes prices very well, which we view as justification for the chosen simulation algorithm.