A Cautionary Note on Pricing Longevity Index Swaps
(Joint work with Johnny S.H. Li)

Rui Zhou

Department of Statistics and Actuarial Science
University of Waterloo

44th Actuarial Research Conference 2009
Objectives

- Pricing QxX index swap
- Examining the parameter risk and model risk in the pricing
- Determining the effect of the uncertainty on the pricing

Outline

- Mortality derivatives
- QxX index Swap
- Parameter risk
- Model risk
- Conclusion
Mortality Derivatives

What are mortality derivatives?

- Financial contracts that have payoffs tied to the level of a certain longevity or mortality index
- Examples: survivor bond, survivor swap, ...

How to price mortality derivatives?

- Mortality model
- Wang’s Transform, Q measure, ...
A two-factor stochastic mortality model (Cairns, Blake and Dowd (2006))

Mathematical Specification:

\[
\ln \frac{q_{x,t}}{1 - q_{x,t}} = A_1(t) + A_2(t)x. \tag{1}
\]

- \(x\) → age
- \(t\) → time
- \(q_{x,t}\) → realized single-year death probability
- \(\{A_1(t)\}\) and \(\{A_2(t)\}\) → discrete-time stochastic processes
A Cautionary Note on Pricing Longevity Index Swaps

Mortality Derivatives

Mortality model

A two-factor stochastic mortality model (con’t)

Stochastic Mortality: Recall: \(\ln \frac{q_{x,t}}{1-q_{x,t}} = A_1(t) + A_2(t)x \)

\[
D(t + 1) = A(t + 1) - A(t) \\
= \mu + CZ(t + 1)
\]

\(A(t) = (A_1(t), A_2(t))' \)

\(\mu \rightarrow \) constant 2 \(\times \) 1 vector

\(C \rightarrow \) constant 2 \(\times \) 2 upper triangular matrix

\(Z(t) \rightarrow \) 2-dim standard normal random variable
Model fitting

Data

- $q_{x,t}$, $x = 65, 66, \ldots, 109$, $t = 1971, 1972, \ldots, 2005$

Model fitting

$$\ln \frac{q_{x,t}}{1-q_{x,t}} = A_1(t) + A_2(t)x \quad D(t + 1) = \mu + CZ(t + 1)$$

- First step: Estimate $A(t)$ by least square method
- Second step: Estimate μ and C through maximum likelihood estimation
A Cautionary Note on Pricing Longevity Index Swaps

Mortality Derivatives

Mortality model

Forecasting

Steps

\[
\ln \frac{q_{x,t}}{1-q_{x,t}} = A_1(t) + A_2(t)x \quad D(t+1) = \mu + CZ(t+1)
\]

► Simulate a set of \(Z \)
► Obtain corresponding \(D(2005 + k), \quad k = 1, 2, \ldots, 10 \)
► \(A(2005 + k) = A(2005) + \sum_{n=1}^{k} D(2005 + n), \quad k = 1, 2, \ldots, 10 \)
► Calculate \(q_{x,2005+k} \)
Pricing in Risk-adjusted world

Real-world probability measure (P measure)

\[D(t + 1) = \mu + CZ(t + 1) \] \hspace{1cm} (3)

Risk-adjusted probability measure (Q measure)

\[
\begin{align*}
D(t + 1) &= \mu + C(\tilde{Z}(t + 1) - \lambda) \\
 &= \tilde{\mu} + C\tilde{Z}(t + 1),
\end{align*}
\] \hspace{1cm} (4)

where \(\lambda \) is the market price of risk and \(\tilde{\mu} = \mu - C\lambda \).
QxX Index

“allows market participants to measure, manage and trade exposure to longevity and mortality risks in a standardized, transparent, and real-time manner"

- Launched by Goldman Sachs in 2007
- Based on a reference pool consisting of a set of lives underwritten by AVS Underwriting LLC
- The index value is the number of lives in the reference pool
- Published monthly, providing “real-time" mortality information
A Cautionary Note on Pricing Longevity Index Swaps

Payment structure of QxX index swap

\[X \left(\frac{S_{k-1}}{S_0} \cdot \frac{\sigma}{12} \right) \]

\[X \left(\frac{S_{k-1} - S_k}{S_0} \right) \]

- \(X \rightarrow \) nominal amount
- \(S_k \rightarrow \) index value in the \(k \)th month
- \(\sigma \rightarrow \) fixed spread
- Goldman Sacs: \(\sigma = 500 \) basis points for 10-year swap
A Cautionary Note on Pricing Longevity Index Swaps

QxX index swap

Pricing a 10-year QxX index swap

10-year QxX index swap price

- QxX index swap is priced by determining the “fair” spread σ

 $\text{Market value of future payments from fixed payer} = \text{Market value of future payments from fixed receiver}$

- We need to know the market price of risk λ. In our analysis,
 - Not enough data to estimate λ for QxX index swaps
 - Use the estimated market price of risk from BNP/EIB longevity bond
10-year QxX index swap price (Con’t)

Estimates of σ (in basis points) under different choices of

$\lambda = (\lambda_1, \lambda_2)$

<table>
<thead>
<tr>
<th>λ_1</th>
<th>λ_2</th>
<th>σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.375</td>
<td>0</td>
<td>627</td>
</tr>
<tr>
<td>0</td>
<td>0.316</td>
<td>619</td>
</tr>
<tr>
<td>0.175</td>
<td>0.175</td>
<td>622</td>
</tr>
</tbody>
</table>

Why $\sigma \neq 500$ bps?

- No access to the actual QxX index reference pool
- Lack of market data for the swap
- Existence of parameter risk and model risk
Parameter risk under Bayesian Method

- $D(t) \sim \text{MVN}(\mu, V)$, where $V = C' C$.
- Treat μ and C as random variables
 \[D(t) \mid \mu, V \sim \text{MVN}(\mu, V) \] \hspace{1cm} (5)
- Use a non-informative prior distribution
 \[\pi(\mu, V) \propto |V|^{-3/2} \] \hspace{1cm} (6)
- Marginal posterior distribution
 \[V^{-1} \mid D \sim \text{Wishart}(n - 1, n^{-1} \hat{V}^{-1}) \] \hspace{1cm} (7)
 \[\mu \mid D \sim \text{MVN}(\hat{\mu}, n^{-1} \hat{V}) \]
A Cautionary Note on Pricing Longevity Index Swaps

Parameter risk

Bayesian Method

Estimated marginal posterior density functions for the model parameters

Figure: Simulated marginal posterior parameter distributions. (We denote the ith element in μ by μ_i and the (j, k)th element in V by $V_{j,k}$).
Simulated predictive distribution of σ, $\lambda = (0.375, 0)$
95% Confidence Interval for σ

<table>
<thead>
<tr>
<th>λ_1</th>
<th>λ_2</th>
<th>With parameter risk</th>
<th>Without parameter risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.375</td>
<td>0</td>
<td>(560,693)</td>
<td>(574,680)</td>
</tr>
<tr>
<td>0</td>
<td>0.316</td>
<td>(553,685)</td>
<td>(567,673)</td>
</tr>
<tr>
<td>0.175</td>
<td>0.175</td>
<td>(557,686)</td>
<td>(571,675)</td>
</tr>
</tbody>
</table>

Table: 95% confidence intervals for σ (in basis points) under different choices of λ_1 and λ_2.
Model risk in pricing

Figure: Estimated values of $A_1(t)$ and $A_2(t)$, 1971–2005.
A Cautionary Note on Pricing Longevity Index Swaps

Model risk

Reason for the reverse trend

What causes the reverse trend?

Crude mortality curves

\[\ln \frac{q_{x,t}}{1-q_{x,t}} = A_1(t) + A_2(t)x \]
What causes the reverse trend?

Life expectancies at age 65

\[
\ln \frac{q_{x,t}}{1-q_{x,t}} = A_1(t) + A_2(t)x
\]
A Cautionary Note on Pricing Longevity Index Swaps

Future trends

Three possible scenarios

![Graph showing three possible scenarios with data points for A1(t) and A2(t) over the years 1960 to 2020.](image)
How does the change affect QxX index swap price?

<table>
<thead>
<tr>
<th>λ_1</th>
<th>λ_2</th>
<th>Scenario 1</th>
<th>Scenario 2</th>
<th>Scenario 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.375</td>
<td>0</td>
<td>627</td>
<td>674</td>
<td>566</td>
</tr>
<tr>
<td>0</td>
<td>0.316</td>
<td>619</td>
<td>683</td>
<td>553</td>
</tr>
<tr>
<td>0.175</td>
<td>0.175</td>
<td>622</td>
<td>678</td>
<td>558</td>
</tr>
</tbody>
</table>

Table: Swap spread (in basis points) under three different scenarios.
Conclusion

- The swap spread computed from our pricing framework is fairly close to the spread currently offered by Goldman Sachs.
- The pricing is still very experimental.
 - Parameter risk and model risk are significant in the pricing.
 - No sufficient market price data to estimate market prices of risk.
 - No clear conclusion on how mortality rates may evolve in the future.