The Distribution of The Total Dividend Payments in a MAP Risk Model with Multi-Threshold Dividend Strategy

Jingyu Chen

Department of Statistics and Actuarial Science
Simon Fraser University

44th ARC, Madison, 2009

This is the joint work with Dr. Yi Lu, SFU
Outline of Topics

1. Introduction
2. Differential Approach
3. Layer-Based Recursive Approach
4. Numerical Example
5. Conclusion
Sample Surplus Process

Surplus $U(t)$

Premium rate $= c$

Time t

premiums

claims

ruin

u

0
The Classical Risk Model

- The surplus process \(\{U(t); t \geq 0\} \) with \(U(0) = u \), s.t.
 \[
dU(t) = cdt - dS(t), \quad t \geq 0.
\]

- Premiums are collected continuously at a constant rate \(c \)

- A sequence of non-negative claim amounts r.v. \(\{X_n; n \in \mathbb{N}^+\} \)

- Number of claims up to time \(t \), \(N(t) \sim \text{Poisson}(\lambda t) \)

- Aggregate claim amounts up to time \(t \), \(S(t) = \sum_{n=1}^{N(t)} X_n \)

- Time of ruin \(\tau = \inf\{t \geq 0 : U(t) < 0\} \)
MAP Risk Model

MAP \((\vec{\alpha}, D_0, D_1)\)

- Initial distribution, \(\vec{\alpha}\)
- Intensity matrix, \(D_0 + D_1\)
- Intensity of state changing without claim, \(D_0(i, j) \geq 0, j \neq i\)
- Intensity of state changing with claim, \(D_1(i, j) \geq 0\)
- The diagonal elements of \(D_0\) are negative values, s.t. \(D_0 + D_1 = 0\)

- Special cases: classical risk model, Sparre-Andersen risk model, Markov-modulated risk model

Reference: Badescu et al. (2007), Badescu (2008), Ren (2009),
Various Dividend Strategies

![Graph showing surplus over time with premium and claim lines, indicating ruin at a certain point.]

- Various Dividend Strategies
- Time t
- Premiums
- Claims
- Ruin
- Surplus
- Time t
Various Dividend Strategies
Various Dividend Strategies

- Various Dividend Strategies
- Differential Approach
- Layer-Based Recursive Approach
- Numerical Example
- Conclusion

The diagram illustrates the surplus process over time t, with premium payments and claims. The surplus levels b_1 and b_2 are shown, with the point of ruin indicated.
Multi-Threshold MAP Risk Model

- Thresholds: \(0 = b_0 < b_1 < \cdots < b_n < b_{n+1} = \infty \)
- Premium rate \(c_k \) for \(b_{k-1} \leq u < b_k, \ k = 1, \cdots, n + 1 \)
 \[c = c_1 > c_2 > \cdots > c_n > c_{n+1} \geq 0 \]
- Time of ruin \(\tau_B = \inf\{t \geq 0 : U_B(t) < 0\} \)
- Surplus process \(\{U_B(t); t \geq 0\} \) satisfies
 \[dU_B(t) = c_k dt - dS(t), \quad b_{k-1} \leq U_B(t) < b_k \]
- Claim amounts distribution \(f_{i,j}, F_{i,j} \) and Laplace transformation \(\hat{f}_{i,j}(s) \)
Expected Discounted Dividend Payments

- $D(t)$ is the aggregate dividends paid by time t
- Define
 \[D_{u,B} = \int_0^{\tau_B} e^{-\delta t} dD(t), \quad u \geq 0, \]
 to be the present value of dividend payments prior to ruin, given the initial surplus u
- Define
 \[V_i(u; B) = \mathbb{E}_i[D_{u,B} \mid U_B(0) = u], \quad i \in E, \]
 to be the expected present value of dividend payments prior to ruin, given the initial surplus u and the initial phase $i \in E$
The piecewise vector function of the expected present value of the total dividend payments prior to ruin

\[
\vec{V}(u; B) = \begin{cases}
\vec{V}_1(u; B) & 0 \leq u < b_1, \\
\vec{V}_k(u; B) & b_{k-1} \leq u < b_k, \quad k = 2, \cdots, n, \\
\vec{V}_{n+1}(u; B) & b_n \leq u < \infty.
\end{cases}
\]

\[
\vec{V}_k(u; B) = (V_{1,k}(u; B), \cdots, V_{m,k}(u; B))^\top
\]
for \(b_{k-1} \leq u < b_k \) and \(k = 1, \cdots, n + 1 \).
Differential Approach

- Typical approach in various risk models
- Integro-differential equations are involved
- Can be derived and solved analytically for some families of claim amounts distribution
- Mainly in Gerber-Shiu discounted penalty function
 Techniques can be applied to the dividend payments problems
- Lin and Sendova (2008), classical risk model
- Lu and Li (2009), Sparre Andersen risk model
Integro-Differential Equation for $\vec{V}_k(u; B)$

- Condition on the events occurring in a small time interval $[0, h]$
 - No change in the MAP state
 - A change in the MAP state accompanied by no claim arrival
 - A change in the MAP state accompanied by a claim arrival; Claim amounts may vary
 - Two or more events occur
Integro-Differential Equation for $\vec{V}_k(u; B)$

- Integro-differential equation, for $b_{k-1} \leq u < b_k$

$$c_k \vec{V}_k'(u; B) = \delta \vec{V}_k(u; B) - D_0 \vec{V}_k(u; B) - \int_0^{u-b_{k-1}} \Lambda_f(x) \vec{V}_k(u-x; B) dx - \vec{\gamma}_k(u)$$

where $\gamma_{i,k}(u) = (c - c_k) + \sum_{j=1}^{m} D_1(i,j) \sum_{l=1}^{k-1} \int_{u-b_l}^{u-b_{l-1}} V_{j,l}(u-x; B) dF_{i,j}(x)$

- Solution

$$\vec{V}_k(u; B) = \vec{v}_k(u - b_{k-1}) \vec{V}_k(b_{k-1}; B) - \frac{1}{c_k} \int_0^{u-b_{k-1}} \vec{v}_k(t) \vec{\gamma}_k(u - t) dt$$

where $\vec{v}_k(u - b_{k-1}) = \mathcal{L}^{-1} \left\{ \left(s - \frac{\delta}{c_k} \right) I + \frac{1}{c_k} (D_0 + \Lambda_f(s)) \right\}^{-1}$
Recursive Expression for $\vec{V}_k(u; B)$

- Define vector function $\vec{V}_k(u)$ for $u \geq b_{k-1}$

$$\vec{V}_k(u) = v_k(u - b_{k-1})\vec{V}_k(b_{k-1}) - \frac{1}{c_k} \int_0^{u-b_{k-1}} v_k(t)\vec{\gamma}_k(u - t)dt$$

- Restrict to $b_{k-1} \leq u < b_k$, compare with $\vec{V}_k(u; B)$

$$\vec{V}_k(u; B) = \vec{V}_k(u) + v_k(u - b_{k-1})\vec{\pi}_k(B), \quad b_{k-1} \leq u < b_k$$

- Continuity condition at b_{k-1}, $k = 1, \cdots, n$

$$\vec{\pi}_{k+1}(B) = \vec{V}_k(b_k) - \vec{V}_{k+1}(b_k) + v_k(b_k - b_{k-1})\vec{\pi}_k(B)$$

- Final boundary condition when $k = n + 1$

$$\vec{\pi}_{n+1}(B) = \vec{V}_n(b_n) - \vec{V}_{n+1}(b_n) + v_n(b_n - b_{n-1})\vec{\pi}_n(B) = \vec{0}$$
Layer-Based Recursive Algorithm

- Computational disadvantage of the recursive algorithm based on integro-differential equations
 - Constant vectors can only be solved in the last layer
 - Infeasible to compute for large number of layers

- Layer-based approach
 - Condition on the exit times of the surplus out of each layer
 - Calculate successively for increasing number of layers

\[
\text{The } k\text{-layer model } \Leftarrow \begin{cases}
\text{The } (k-1)\text{-layer model} \\
\text{Classical one-layer model}
\end{cases}
\]

Reference: Albrecher and Hartinger (2007)
Sample Path of One-Layer Model with Dividend Payments
Time Value of Upper Exit

- Define $\tau^*(u, a, b) = \inf\{ t \geq 0 : U(t) \notin [a, b]|U(0) = u\}$
- Define

 $$\tau^+(u, a, b) = \begin{cases}
 \tau^*(u, a, b) & \text{if } U(\tau^*(u, a, b)) = b \\
 \infty & \text{if } U(\tau^*(u, a, b)) < a
 \end{cases}$$

 and

 $$\tau^-(u, a, b) = \begin{cases}
 \infty & \text{if } U(\tau^*(u, a, b)) = b \\
 \tau^*(u, a, b) & \text{if } U(\tau^*(u, a, b)) < a
 \end{cases}$$

- Laplace transform of $\tau_k^+(u, 0, b)$

 $$B_{i,j,k}(u, b) = \mathbb{E} \left[e^{-\delta \tau_k^+(u, 0, b)} \mathbf{1}_{[J(\tau_k^+(u, 0, b))=j]} | J(0) = i \right]$$

 given initial phase i and reaching b in phase j

Time Value of Upper Exit

For $\delta > 0$ and $k \in \mathbb{N}^+$, we have

1. $B_k = 1$, if $u \geq b$
2. $B_k = 0$, if $u < 0$
3. For $0 \leq u < b_{k-1}$

 $$B_k(u, b) = \begin{cases}
 B_{k-1}(u, b), & \text{if } b \leq b_{k-1} \\
 B_{k-1}(u, b_{k-1})B_k(b_{k-1}, b), & \text{if } b \geq b_{k-1}
 \end{cases}$$

4. For $b_{k-1} \leq u \leq b$

 $$B_k(u, b) = B_{1,k}(u - b_{k-1}, b - b_{k-1}) + M_k(u - b_{k-1}) - B_{1,k}(u - b_{k-1}, b - b_{k-1})M_k(b - b_{k-1})$$

- Parallel results in matrix form

Reference: Albrecher and Hartinger (2007)
Sample Path for $0 \leq u \leq b_{k-1}$

Surplus $U_B(t)$

\[
\begin{align*}
\text{after hitting } b_{k-1}: & \quad \sum_{l=1}^{m} B_{l,l-1}(u,b_{k-1}) V_{l,k}(b_{k-1};B) \\
\text{before hitting } b_{k-1}: & \quad V_{l,k-1}(u;B) - \sum_{l=1}^{m} B_{l,l-1}(u,b_{k-1}) V_{l,k-1}(b_{k-1};B)
\end{align*}
\]
Sample Path for $u \geq b_{k-1}$

$$U_{1,k}(t)$$

Case $0 \leq u < b_{k-1}$

$$U_B(\tau_k^-(u,b_{k-1},b)) = b_{k-1} - |U_{1,k}(\tau_{1,k}(u-b_{k-1}))|$$

Surplus $U_0(t)$
Expected Discounted Dividend Payments

- For $0 \leq u \leq b_{k-1}$
 \[\tilde{V}_k(u; B) = \tilde{V}_{k-1}(u; B) + B_{k-1}(u, b_{k-1}) \left[\tilde{V}_k(b_{k-1}; B) - \tilde{V}_{k-1}(b_{k-1}; B) \right] \]

- For $u \geq b_{k-1}$
 \[
 \tilde{V}_k(u; B) = \tilde{V}_{1,k}(u - b_{k-1}) + \mathbb{E} \left[e^{-\delta \tau_{1,k}(u-b_{k-1})} \tilde{V}_k(b_{k-1} - |U_{1,k}(\tau_{1,k}(u-b_{k-1}))|; B) \right]
 \]
“Contagion” Example

- State A: standard claims, $\lambda_1 = 1$, $1/\beta_1 = 1/5$
- State B: additional infectious claims, $\lambda_2 = 10$, $1/\beta_2 = 3$
- State A \rightarrow B, $\alpha_A = 0.02$; State B \rightarrow A, $\alpha_B = 1$
- $D_1 = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_1 + \lambda_2 \end{pmatrix}$, $D_0 = \begin{pmatrix} -\alpha_A - \lambda_1 & \alpha_A \\ \alpha_B & -\alpha_B - \lambda_1 - \lambda_2 \end{pmatrix}$
- Thresholds $(0, 20, 40, \infty)$, premium rates $(2, 1.5, 1)$

<table>
<thead>
<tr>
<th>u</th>
<th>$\delta = 0.1$</th>
<th>$\delta = 0.01$</th>
<th>$\delta = 0.001$</th>
<th>Badescu et al. (2007)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>158.99</td>
<td>323.23</td>
<td>356.68</td>
<td>N/A</td>
</tr>
<tr>
<td>10</td>
<td>350.55</td>
<td>457.58</td>
<td>500.95</td>
<td>503.00</td>
</tr>
<tr>
<td>30</td>
<td>417.19</td>
<td>671.02</td>
<td>692.82</td>
<td>692.60</td>
</tr>
<tr>
<td>50</td>
<td>688.25</td>
<td>802.29</td>
<td>821.50</td>
<td>842.07</td>
</tr>
<tr>
<td>70</td>
<td>814.98</td>
<td>926.93</td>
<td>942.78</td>
<td>968.82</td>
</tr>
</tbody>
</table>
Conclusion

- Differential approach is applicable to the MAP risk model
- Moment generating function and higher moments
- Layer-based approach provides an alternative method
Reference